Những câu hỏi liên quan
dbrby
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết
Võ Hồng Phúc
20 tháng 11 2019 lúc 22:23

Áp dụng BĐT AM - GM:

\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)

Tương tự ta CM được:

\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)

Cộng vế với vế 3 bất đẳng thức trên, ta được:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)

bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
20 tháng 11 2019 lúc 22:23

\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)

Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng vế với vế:

\(VT\ge2\left(x^3+y^3+z^3\right)=2\)

Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.

BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Chiến
8 tháng 11 2019 lúc 14:13
Bình luận (0)
 Khách vãng lai đã xóa
Lê Huỳnh
Xem chi tiết
Nguyễn Tuấn Anh
23 tháng 4 2016 lúc 16:00

Đề sai nha: Vì \(x^3+y^3+z^3=1\);

Vậy ta có: \(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{x\sqrt{1-x^2}}\)  Mà ta có: \(x\sqrt{1-x^2}\le\frac{x^2+1-x^2}{2}\) = \(\frac{1}{2}\) Dấu bằng xảy ra khi \(x=\sqrt{\frac{1}{2}}\)

Vậy \(\frac{x^2}{\sqrt{1-x^2}}\ge2x^3\)

Tương tự ta có: \(P=\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)\) mà \(x^3+y^3+z^3=1\) vậy \(P\ge2\)

Dấu bằng xảy ra khi: \(x=y=z=\sqrt{\frac{1}{2}}\)Nhưng khác với \(x^3+y^3+z^3=1\) Vậy đề bài sai. Chứng tỏ bài này là bài tự chế 
Đáng ra bài đúng là:
Cho \(x,y,z\) là ba số thực dương, thỏa mãn: \(x^2+y^2+z^2=1\)Chứng minh rằng: $=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}+\frac{z}{\sqrt{1-z^2}}\ge 2$

Bình luận (0)
Nguyễn Thị Vân Anh
11 tháng 10 2017 lúc 20:38

\(x\sqrt{1-x^2}\ge\frac{x^2+1-x^2}{2}\) là BĐT nào vậy

Bình luận (0)
Nguyễn Thị Vân Anh
11 tháng 10 2017 lúc 20:40
Xin looixtows lầm
Bình luận (0)
ITACHY
Xem chi tiết
Trần Quốc Lộc
17 tháng 8 2019 lúc 11:30

\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)

Áp dụng BDT Cô-si với 2 số không âm:

\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)

Vậy.......

Bình luận (0)
hung
Xem chi tiết
Mai Thanh Hải
11 tháng 8 2017 lúc 20:30

Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)

\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\

\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )

\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)

\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Bình luận (0)
Nam Thanh Long
Xem chi tiết
hoàng thanh
12 tháng 5 2015 lúc 22:30

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

Bình luận (0)
Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
30 tháng 9 2019 lúc 18:05

Áp dụng BĐT Cauchy - Schwarz ta có :
\(\frac{1}{\sqrt{x}+2\sqrt{y}}\le\frac{1}{9}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)

Tương tự cho 2 BĐT trên ta có :

\(\frac{1}{3}VP\le\frac{1}{9}.3\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\)

\(=\frac{1}{3}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)=\frac{1}{3}VT\)

Xảy ra khi \(x=y=z\)

Chúc bạn học tốt !!!

Bình luận (0)
Vũ Tiến Manh
30 tháng 9 2019 lúc 18:18

ta có bdt (\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))(a+b+c)\(\ge\)9 (dễ dàng chứng minh) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng bdt trên ta được

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}\ge\frac{9}{2\sqrt{y}+\sqrt{x}}\)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{y}+2\sqrt{z}}\)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\ge\frac{9}{\sqrt{z}+2\sqrt{x}}\)

Cộng vế theo vế ta đươc đt cần chứng minh

Dấu bằng khi x=y=z

Bình luận (0)
Phan Lương
Xem chi tiết
Vũ Thị Thu Hiền
20 tháng 3 2019 lúc 15:53

có biết huệ ko

Bình luận (0)
Linh Nhi
Xem chi tiết
Nguyễn Thị Mát
1 tháng 1 2020 lúc 9:42

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

Bình luận (0)
 Khách vãng lai đã xóa