cho tam giác ABC cân tại A trên cạnh AB và AC lấy tương ứng 2 điểm D VÀ E sao cho AD=AE A)CHỨNG MINH I LÀ TRUNG ĐIỂM CỦA BC
cho tam giác ABC vuông cân tại A. Trên cạnh AC và AB lấy tương ứng 2 điểm D và E sao cho AE=AD, các đường thẳng vuông góc với ce kẻ từ A và D lần lượt cắt BC tại K và N. Chứng minh rằng : BK=KN
Cho tam giác ABC cân tại A,trên cạnh AB và AC lần lượt lấy điểm D và E sao cho AD=AE.Gọi K là giao điểm của CD và BE.
a,Cm: tam giác ADC= tam giác AEB
b,Cm:tam giác KBC cân
c,trên tia đối của tia CB lấy điểm M sao cho CM=CB
Tính góc ABC nếu BAC=2*góc MAC
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
Bài 6. Cho tam giác cân ABC có AB= AC. Trên cạnh AB và AC lấy tương ứng hai điểm D và E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh:
a) BE=CD
b) DAMD = DAME
c) DE // BC
a, Xét ABE và ACD có :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> ABE = ACD (c.g.c)
=> BE=CD ( 2 cạnh tương ứng)
b,vì tam giác MBD= tam giác MEC:
=> DM=EM ( 2 cạnh đồng vị)
XÉt tam giác AMD và tam giác AME
AD =AE ( Gt)
DM=EM ( CMT)
AM cạnh chung
=> tam giác AMD=AME ( c.c.c )
chúc bạn học tốt
Cho tam giác cân ABC (AB = AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh rằng:
a) DE // BC
b) tam giac MBD = tam giac MCE
c) tam giac AMD = tam giac AME
a: Xét ΔABC co AD/AB=AE/AC
nên DE//BC
b: Xét ΔDBM và ΔECM có
DB=EC
góc B=goc C
BM=CM
=>ΔDBM=ΔECM
b: Xét ΔADM và ΔAEM có
AD=AE
AM chung
MD=ME
=>ΔAMD=ΔAME
Cho tam gics ABC cân tại A. Trên AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE
a) CM: DE//BC
b) Gọi N là giao điểm của BE và CD. CM: Tam giác MBE là tam giác cân
Cho tam giác cân ABC có AB = AC. Trên cạnh AB, AC lấy tương ứng hai điểm D và E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh:
a) BE = CD
b) Tam giác AMD = tam giác AME
c) DE // BC
a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)
b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)
=> đpcm
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}\)là góc chung
\(AD=DE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )
b) Đề sai, điểm M đâu???
c) Ta có: \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Lại có: \(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
\(\Rightarrow DE//BC\left(đpcm\right)\)
Cho tam giác ABC cân tại A. Trên các cạnh AC và AB lấy tương ứng hai điểm E và D sao cho AD=AE.
a) Tứ giác BEDC là hình gì ? vì sao?
b) Tìm vị trí của điểm D và điểm Émao cho BD = DE = EC.
Bạn cm góc B lớn = góc C lớn (1)
và bạn sẽ dễ dàng cm được DE//BC ( THEO CÁCH LỚP 7 chúng ta đã học )(2) Từ (1)(2)=> tg DECB là hình thang cân
b) vì DB đã bằng EC do hình thang cân DECB rồi nên chỉ cần chứng minh DE=DB hoặc DE=EC
Nếu DE=DB thì tam giác BDE phải cân ở D
Để tam giác đó cân tại D thì g DEB phải bằng g DBE MÀ g BEB= g EBC (SLT)
=> gDBE phải bằng gEBC mà gDBE+gEBC=B lớn
=> yêu cầu : gDBE=gEBC=1/2gB lớn
hay BE phải là tia p/giác g B lớn
Vậy E phải là giao điểm tia p/g g B lớn và AC còn D là giao điểm của đường thẳng đi qua E và // vs BC VÀ AB
a) Xét tam giác ABC cân tại A có:
Góc C=\(\frac{180-A}{2}\)(1)
Xét tam giác AED có:
AE=AD (GT)
=> tam giác AED can tại A
=> \(D^2=\frac{180-A^2}{2}\left(2\right)\)
Từ (1) và (2) suy ra:
C=D
Hay: ACD=ADE
Mà ACD và ADE là 2 góc đồng vị
Vậy ED//BC
=> BEDC là hình thang
Mặt khác: B=C (2 góc đáy tam giác cân)
Vậy tứ giác BEDC là hình thang cân
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Chứng minh: DE//BC
Vì AD=AE.
=>tg ADE cân tại A.
Vậy, suy ra: góc ADE= góc ABC(vì cả 2 tg đều cân tại A nên các góc ở đáy bằng nhau).
Mà góc ADE và góc ABC ở vi trí đồng vị.
=>DE // BC.
cho tam giác ABC cân tại A lấy điểm D trên cạnh AB điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của CD và BE. Chứng minh rằng: a)BE=CD b) tam giác KBD=tam giác KCE c)AK là tia phân giác của A d)tam giác KBClaf tam giác cân
tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=CE
DC=EB
BC chung
Do đó: ΔBDC=ΔCEB
Xét ΔKBD và ΔKCE có
\(\widehat{KBD}=\widehat{KCE}\)
BD=CE
\(\widehat{KDB}=\widehat{KEC}\)
Do đó: ΔKBD=ΔKCE
c: Ta có: ΔKBD=ΔKCE
nên KB=KC
Xét ΔABK và ΔACK có
AB=AC
AK chung
BK=CK
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC