Chứng minh rằng : Nếu đa thức f(x)=ax + b có hai nghiệm x1 và x2 khác nhau thi f(x) là đa thức 0
Chứng minh rằng : Nếu đa thức f(x)=ax + b có hai nghiệm x1 và x2 khác nhau thi f(x) là đa thức 0
Có:
\(f\left(x_1\right)=ax_1+b=0\)
\(f\left(x_2\right)=ax_2+b=0\)
\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)
\(\Rightarrow a\left(x_1-x_2\right)=0\)
\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)
\(\Rightarrow a=0\)
\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)
Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.
Vậy f(x) là đa thức 0.
Xét đa thức P(x)=ax+b. Chứng minh rằng nếu P(x) có hai nghiệm x1,x2 khác nhau thì a=b=0 (hay P(x) là đa thức không)
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho các đa thức: f(x)=ax+b và g(x)=bx+a, trong đó a;b khác 0. Biết rằng nghiệm của đa thức f(x) là số dương. Chứng minh rằng nghiệm của đa thức g(x) cũng là một số dương
Cho đa thức f(x)=ax^2+bx+c . Chứng minh rằng nếu x=1 và x=-1 là nghiệm của đa thức f(x) thì a và c là hai số đối nhau
Cho đa thức f(x) = ax^2 + bx + c
a, Chứng minh rằng nếu a + b + c = 0 thì đa thức f(x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f(x) có nghiệm bằng -1
Giải chi tiết giùm nha ai giải được mình like cho
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)
\(f\left(1\right)=a+b+c\)
Mà theo đề bài có a+b+c=0
=>\(f\left(1\right)=0\)
x=1 là một nghiệm của đa thức f(x)
Phần b bạn làm tương tự nhé
Cho đa thức f(x) = ax^2 + bx + c
a , Chứng minh nếu a + b + c = 0 thì đa thức f ( x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f ( x) có nghiệm bằng -1
giải chi tiết giùm mình nha
Cho đa thức f(x)=ax^2+bx+c. Chứng minh rằng nếu x=1, x=-1 là nghiệm của đa thức f(x) thì a và c là số đối nhau
Vì x=1, x=-1 là ngiệm của đa thức f(x) nên
a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0
=>a+b+c=a-b+c=0 (1)
=>b=-b
=>b=0
thay b=0 vào (1) ta có a+c=0
=>a và c là 2 số đối nhau