Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tsukino Usagi
Xem chi tiết
Lovers
22 tháng 4 2016 lúc 22:51

Có:

\(f\left(x_1\right)=ax_1+b=0\)

\(f\left(x_2\right)=ax_2+b=0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)

\(\Rightarrow a\left(x_1-x_2\right)=0\)

\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)

\(\Rightarrow a=0\)

\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)

Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.

Vậy f(x) là đa thức 0.

 

Linh Nguyễn
Xem chi tiết
Nguyễn Tiến Đức
Xem chi tiết
Nguyễn Tiến Đức
Xem chi tiết
Quách Quỳnh Bảo Ngọc
Xem chi tiết
Ti Khoa
Xem chi tiết
Vũ Như Mai
25 tháng 4 2017 lúc 15:40

Bạn vô câu hỏi tương tự xem nhé.

super xity
Xem chi tiết
Iruko
14 tháng 8 2015 lúc 15:41

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

Vic Lu
11 tháng 4 2017 lúc 19:37

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

super xity
Xem chi tiết
huongkarry
Xem chi tiết
nguyen minh duc
8 tháng 5 2017 lúc 20:56

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

Nguyễn Phương Thảo
8 tháng 5 2017 lúc 20:59

k cho mình