cho tam giác mnp, ma là dường trung tuyến đồng thời là phân giác của đỉnh m. chứng minh tam giác mnp la tam giác caan
cho tam giác mnp, ma là dường trung tuyến đồng thời là phân giác của đỉnh m. chứng minh tam giác mnp la tam giác caan
Cho tam giác MNP cân tại M có 2 đường trung tuyến NE và PF cắt nhau tại điểm O a) Chứng minh NE và PF b) Chứng minh MO là đường phân giác của tam giác MNP
a: Xét ΔMEN và ΔMFP co
ME=MF
góc M chung
MN=NP
=>ΔMEN=ΔMFP
=>EN=FP
b: Xét ΔFNP và ΔEPN có
FN=EP
NP chung
FP=EN
=>ΔFNP=ΔEPN
=>góc ONP=góc OPN
=>ON=OP
Xét ΔMON và ΔMOP có
MO chung
ON=OP
MN=MP
=>ΔMON=ΔMOP
=>góc NMO=góc PMO
=>MO là phân giác của góc NMP
Cho tam giác MNP cân tại M có MN=10 cm Np= 16 cm và MA là đường cao a) Tính MA và AN b) Chứng minh Ma là tia phân giác của tam giác MNP
cho tam giác MNP có MN=MP, MI là đường trung tuyến.
a) tam giác MNP là tam giác gì?
b)chứng minh: tam giác MNI= tam giác MPI
c) chứng minh MI là dường trung trực của đoạn thẳng NP
d) cho MN=MP= 10cm, NP= 12cm. tính độ dài MI
e)kẻ IH vuông góc với MN, H thuộc MN. trên MH lấy điểm E, trên MH lấy điểm E, trên MP lấy điểm Fsao cho góc MEF bằng hai lần góc EIH. chứng minh rằng: EI là tia phân giác của góc HEF
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
cảm ơn hoàng hàn nhật băng nhiều, mk mới tham gia nên ko biết mỗi câu hỏi chỉ dc k đúng 1 lần xin lỗi bạn nha
Cho tam giác MNP có MN=MP.Gọi A là trung điểm của NP a,Chứng minh rằng : Tam giác MNA = tam giác MPA b,Chứng minh rằng : MA là tai phân giác của góc NMP c,Chứng minh rằng MA vuông góc với NP d,Trên nửa mặt phẳng không chứa điểm M có bờ là đường thẳng NP vẽ điểm D sao cho DN =DP . Chứng minh rằng ba điểm M,A,D thẳng hàng
a: Xét ΔMNA và ΔMPA có
MN=MP
NA=PA
MA chung
=>ΔMNA=ΔMPA
b: ΔMNP cân tại M
mà MA là trung tuyến
nên MA là phân giác của góc NMP
c: ΔMNP cân tại M
mà MA là trung tuyến
nên MA vuông góc NP
d: DN=DP
nên D nằm trên trung trực của NP
mà MA là trung trực của NP
nên M,A,D thẳng hàng
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
im đi Lê Minh Phương
kệ mẹ tao, thằng điên
Cho tam giác MNP vuông tại M có MN=5cm, MP=12cm và đường cao MH.
a. Chứng minh: tam giác MNP đồng dạng tam giác HNM. Từ đó suy ra MN^2=NH.NP
b. Tính NP,NH.
c. Cho NQ là phân giác của góc MNP (Q thuộc MP). Chứng minh: QM/QP và QM,QP.
d. Gọi E là giao điểm MH và NQ. Tính tỉ số S^MNQ/S^HNE
a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có
góc N chung
DO đó: ΔMNP∼ΔHNM
Suy ra: NM/NH=NP/NM
hay \(NM^2=NH\cdot NP\)
b: NP=13cm
\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)
Cho tam giác MNP có MN = MP. Lấy A là trung điểm của NP.a Chứng minh tam giác AMN= tam giác AMP.b Chứng minh MA là tia phân giác của góc NMP.c lấy y là trung điểm MN trên tia đối IA lấy điểm H sao cho IA = IH. Chứng minh MH song song NP.d lấy E là trung điểm MP Trên tia đối EA lấy điểm K sao cho AE = EK. Chứng minh M,H,K thẳng hàng.
Cho tam giác MNP vuông tại M, trung tuyến MI. Trên tia MI lấy điểm Q sao cho MQ=2MI. Chứng minh NQ//MP. Chứng minh tam giác MNP=tam giác NMQ. Gọi G là trọng tâm của tam giác MNQ. Tính IG biết MN =9cm, NQ = 12cm. Trên tia MQ lấy điểm K sao cho MQ = 3MK. Gọi E là trung điểm của MP. Chứng minh N,K, thẳng hàng