Chứng minh rằng 2/3^2+3/3^3+4/3^4+..................+2016/3^2016< 5/12
Chứng minh rằng: A=1^3+2^3+3^3+4^3+...+2016^3 là số chính phương.
chứng tỏ rằng biểu thức : A=3^1+3^2=3^3+3^4+...+3^2015+3^2016 chia hết cho 4
\(A=3+3^2+3^3+3^4+...+3^{2015}+3^{2016}\\\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(A=\left(1+3\right).\left(3+3^3+...+3^{2015}\right)\)
\(A=4.\left(3+3^3+...+3^{2015}\right)\)
Suy ra : \(A⋮4\)
Chứng minh rằng : S = 5 + 52 + 53 + 54 + ... + 52016 chia hết cho 31
nhóm (5+52+53) lại rồi tiếp tục nhóm các số còn lại như vậy ta sẽ có thừa số chung là 31 và chia hết cho 31
đầy đủ S= (5+52+53)+ .....+( 52014+52015+52016)
= 5( 1+5+52)+.....+52014( 1+5+52)
= (5+...+52014 ) ( 1+5+52)
= (5+...+52014)31 chia hết cho 31
S = 5 + 52 + 53 + 54 +.........+ 52016
S = ( 5 + 52 + 53 )+( 54 + 55 + 56 )+...........+ ( 52014 + 52015 +5 2016)
S = 5 * (1+ 5 +52 )+ 54 * (1+5+52) + .........+ 52014 * (1 + 5 + 52 )
S = 5 * 31 + 54 * 31 + .........+ 22014 * 31
S = 31 * (5 + 54 + .........+ 52014 )
Vì trong tích có thừa số chia hết cho 31 nên tích đó chia hết cho 31
Chứng minh rằng : 4 + 2^2 + 2^3 + .... + 2^2016 là lũy thừa của 2
Chứng minh rằng
\(\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}< \frac{5}{12}\)
Chứng minh rằng:
\(\frac{2}{3^3}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}< \frac{5}{12}\)
Chứng minh : \(S=\frac{1}{4^1}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2016}{4^{2016}}>\frac{1}{2}\)
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
cho A = x6 - 2015x5 - 2015x4 - 2015x3 - 2015x2 - 2015x - 2016
Chứng tỏ rằng với x=2016 là nghiệm của đa thức trên
Ta có x=2016 => x-1=2015
Thay vào ta được :
A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x
= x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0
Thay x=2016 vào biểu thức trên ta được:
\(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)
\(=0\)
Vậy x=2016 là nghiệm của đa thức .