Chứng minh rằng
\(\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}< \frac{5}{12}\)
Chứng minh rằng:
\(\frac{2}{3^3}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}< \frac{5}{12}\)
cho A = x6 - 2015x5 - 2015x4 - 2015x3 - 2015x2 - 2015x - 2016
Chứng tỏ rằng với x=2016 là nghiệm của đa thức trên
chứng minh rằng 2/3^2+3/3^3+4/3^4+............+2016/3^2016
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
Baifi 1: Tính:
P= \(\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
1,chứng minh rằng:1/3+2/32+3/33+...+100/3100<3/4
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
tinh A=1*2+2*3+3*4+4*5+...+2015*2016+2016*2017
Cách giải