Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Incursion_03
Xem chi tiết

??? Đăng cái j z

Nguyen Ha Tuong Vien
1 tháng 3 2022 lúc 7:56

ủa toán lớp mấy chứ ko phải lớp 1

Khách vãng lai đã xóa
Ngô Văn Đăng Khoa
1 tháng 3 2022 lúc 8:01

uk ko phải toán lớp 1

Khách vãng lai đã xóa
PINK HELLO KITTY
Xem chi tiết
Nguyễn Thị Minh Thúy
2 tháng 3 2017 lúc 11:30

Từ dãy trên ta có:

(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\))                  < vì không có cách nhập hỗn số nên mình đổi ra phân số >

= 2 + 3 + 4 + 5 + 6 + ..........................+ 51

Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số 

Chia ra : 50 : 2 = 25 cặp 

ta có( 51 + 2 ) x 25 =1325

Vậy tổng trên có kết quả bằng 1325       (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )

linh angela nguyễn
Xem chi tiết
Nguyễn Thị Thảo
28 tháng 2 2017 lúc 16:55

\(=\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+...+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(=2+3+...+51\)

\(=\frac{\left(2+51\right)50}{2}\)

\(=1325\)

Lưu Thị Thu Thủy
Xem chi tiết
Phạm Ngọc Gia Hân
13 tháng 8 2018 lúc 9:16

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

Lê Hà
Diệp Băng Dao
19 tháng 2 2017 lúc 18:39

1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)

=(1\(\frac{1}{2}\)+\(\frac{1}{2}\))+(2\(\frac{2}{3}\)+\(\frac{1}{3}\))+(3\(\frac{3}{4}\)+\(\frac{1}{4}\))+.......+(50\(\frac{50}{51}\)+\(\frac{1}{51}\))

=2+3+4+.....+51

=1325

Vậy:1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)=1325

Học Tốt!vui

Quốc Đạt
20 tháng 2 2017 lúc 17:33

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+4\frac{4}{5}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{51}\)

\(=1+\frac{1}{2}+2+\frac{2}{3}+3+\frac{3}{4}+...+50+\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(=\left(1+2+3+...+50\right)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+...+\left(\frac{50}{51}+\frac{1}{51}\right)\)

\(=\frac{50.51}{2}+1+1+1+...+1\) ( có 50 số 1 )

\(=1275+50\)

\(=1325\)

Vũ Đức Vui
21 tháng 2 2017 lúc 15:09

cứ nhóm vào ta được

2+3+......+50+51

suy ra biểu thức trên bằng 1325

linh angela nguyễn
Xem chi tiết
Bùi Hà Chi
27 tháng 2 2017 lúc 14:48

\(1\dfrac{1}{2}+2\dfrac{2}{3}+3\dfrac{3}{4}+...+50\dfrac{50}{51}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{51}\)

\(=\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3\dfrac{3}{4}+\dfrac{1}{4}\right)+...+\left(50\dfrac{50}{51}+\dfrac{1}{51}\right)\)

\(=2+3+4+...+51\)

\(=\dfrac{50\left(51+2\right)}{2}\)

=1325

tinavy
Xem chi tiết
Mây
3 tháng 3 2016 lúc 14:01

Ta có : 

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(2+3+4+5+...+49+50+51\)

\(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)

\(50.26,5\)

= 1325

Không Tên
Xem chi tiết
Siêu Saiyan
3 tháng 3 2017 lúc 17:17

15135454

Xem chi tiết
Lê Tài Bảo Châu
10 tháng 11 2019 lúc 10:18

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
10 tháng 11 2019 lúc 10:20

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
10 tháng 11 2019 lúc 10:22

\(C=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}...+\frac{1}{100!}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Leftrightarrow C< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow C< 2-\frac{1}{100}\)

\(\Leftrightarrow C< 2\left(đpcm\right)\)

Khách vãng lai đã xóa
Hoàng Thị Trà My
Xem chi tiết