Giải câu này giùm mk với ạ
ai giải giùm em câu này với ạ
Rút gọn đúng không=)
\(\left(2x-3\right)\left(x+2\right)-\left(4x-2\right)\left(x-5\right)\\ =2x^2+4x-3x-6-\left(4x^2-20x-2x+10\right)\\ =2x^2+x-6-4x^2+20x+2x-10\\ =-2x^2+23x-16\)
mọi người giải giùm em câu này với ạ
Giúp mình câu này với ạ. Mình cảm ơn nhiều! (Nếu đc thì giải thích giùm mình nha)
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta'=9\left(m-1\right)^2-9m\left(m-3\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ge-1\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{6\left(m-1\right)}{m}\\x_1x_2=\dfrac{9\left(m-3\right)}{m}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Rightarrow\dfrac{6\left(m-1\right)}{m}=\dfrac{9\left(m-3\right)}{m}\)
\(\Rightarrow6\left(m-1\right)=9\left(m-3\right)\)
\(\Rightarrow m=7\)
A đúng
Giúp mình câu này với ạ. Mình cảm ơn nhiều! (Nếu đc thì giải thích giùm mình nha)
giải giùm em 3 câu này vs ạ
Câu 5: Thể tích của khối chóp đã cho: V = 1/3.2a2.2a = 4/3.a3. Chọn C.
Câu 6: Thể tích của khối chóp đã cho: V = 1/3.32.2 = 6. Chọn A.
Câu 7: Thể tích của khối chóp S.ABC: V = 1/3.1/2.a2.h = 5a3 ⇒ h = 30a. Chọn B.
giải giùm mik câu này zới ạ!!!! nhanh nha
mình lamf gì có thấy câu nào đâu bạn ?
Giải thich giùm mình câu này vs, mk cần gấp!!!
Giải giùm em câu này với ạ
(2sinx + 1) . (4cos4x + 2sinx) + 4cos^3x = 3
Em cám ơn ạ <3
Mọi người giúp mk giải chi tiết câu này với ạ. Mk cảm ơn
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)