Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tiến Thành
Xem chi tiết
Giỏi Toán 8
17 tháng 1 2022 lúc 8:58

Nhìn bài là thấy khó rồi bạn.

Nguyễn Lê Phước Thịnh
17 tháng 1 2022 lúc 9:01

\(\Leftrightarrow n\left(n+9\right)⋮11\)

\(\Leftrightarrow\left[{}\begin{matrix}n=11k\\n=11k+2\end{matrix}\right.\left(k\in N\right)\)

Giỏi Toán 8
17 tháng 1 2022 lúc 11:04

Xét các trường hợp số dư của n khi chia cho 11

*n=11k:

=> n2+9n-2=(11k)2+9.11k-2=121k2+99k-2 chia 11 dư -2. (không thỏa mãn).

*n=11k+1

=>n2+9n-2=(11k+1)2+9.(11k+1)-2=121k2+22k+1+99k+9-2

                                                     =121k2+121k+8 chia 11 dư 8. (không thỏa mãn)

*Tương tự với n=11k+2;11k+3;...;11k+10.

Ta thấy rằng:Với n=11k+6 hay 11k+7 thì n2+9n-2 chia hết cho 11.

Vậy n có dạng 11k+6 hay 11k+7 (n chia 11 dư 6, n chia 11 dư 7).

 

nguyễn ngọc huy
Xem chi tiết
Phương Trình Hai Ẩn
12 tháng 6 2017 lúc 14:44

tìm tất cả các số nguyên dương n sao cho? | Yahoo Hỏi & Đáp

nguyễn ngọc huy
16 tháng 6 2017 lúc 9:03

ko phải là chia heetscho n+11 mà chia hết cho 11 

yahoo ko đúng đề bài

Ben 10
5 tháng 8 2017 lúc 20:24

n^2+9n-2 
=n^2+11n-2n-22+20 
=(n+11)(n^2-2)+20 
n^2+9n-2 chia hết cho n+11 
<=>n+11 là Ư(20) (n+11>11) 
n+11=20=>n=9 
Vậy n=9

Trần Hương Giang
Xem chi tiết
Lê Nguyên Hạo
5 tháng 8 2016 lúc 17:40

n^2+9n-2 
=n^2+11n-2n-22+20 
=(n+11)(n^2-2)+20 
n^2+9n-2 chia hết cho n+11 
<=>n+11 là Ư(20) (n+11>11) 
n+11=20=>n=9 
Vậy n=9

Đặng Gia Ân
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Đỗ Thị Hương Giang
Xem chi tiết
Phan Thế Trung
25 tháng 10 2016 lúc 21:03

t​a có: xy+3y-y=6

=> xy+2y=6

=> y(x+2)=6

vì x,y nguyên nên y,(x+2) là các ước của 6

ta có bảng sau

x+21-12-23-36-6
y6-63-32-21-1
x-1-30-41-54-8
what là cái gì
25 tháng 10 2016 lúc 21:20

xy+3y-y=6

xy+y(3-1)=6

xy+y2=6

y(x+2)=6

lập bảng

x+223-2-3
y32-3-2
x01-4-5

vậy với các cặp x,y thỏa mãn là:

nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5

Cù Thanh Bằng
Xem chi tiết
Hường Vĩnh Kha
Xem chi tiết
Ariana Cabello
1 tháng 9 2017 lúc 11:38

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

Hường Vĩnh Kha
1 tháng 9 2017 lúc 11:31

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.

Le Nhat Phuong
1 tháng 9 2017 lúc 11:34

Bn tham khảo bài của chị tui nè:

 để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

Nguyen Thi Ngoc Linh
Xem chi tiết
Akai Haruma
14 tháng 9 lúc 20:17

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

Akai Haruma
14 tháng 9 lúc 20:17

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.