Tìm GTNN A=/x-1/+/2y-3/+1001
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
tìm gtnn A = 15 + /x - 3/ , B = /2x+1/ - 5 , C = / x + 3 / + / 2y-3/ - 1 , D= /x-7/+/x-9/
a) Biết x + y + 1 = 0. Tính giá trị của đa thức:
M= x3+x2y-xy2-y3+x2-y2+2x+2y+3
b) Tính: P(x)=x8-1001. x7+1001. x6- 1001 .x5+...+1001. x2- 1001. x + 250.
a Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
cho x+y=1
tìm gtnn của A=x^2y^3
khó quá!!!!
mk chịu thui
mk mới lớp 6
còn bn lớp 9
nên mk bó tay
chúc bn học giỏi!@@@
thanks
Bài này đâu đến nỗi lớp 9
Nói vậy thui chứ mình không biết làm
a) Biết x + y + 1 = 0. Tính giá trị của đa thức:
M= x3+x2y-xy2-y3+x2-y2+2x+2y+3
b) Tính: P(x)=x8-1001 x7+1001 x6- 1001 x5+...+1001 x2- 1001 x + 250.
a) M=\(x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
=\(x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+2\left(x+y+1\right)+1\)
=\(x^2.0-y^2.0+2.0+1=1\)
Vậy với x+y+1=0 thì M=1
b) hình như thiếu đề
Tìm GTNN của $A=x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13$.
Cho x+y=3. Tìm GTNN của A=x^2+3y^2+2y+5
\(x+y=3\Leftrightarrow x=3-y\\ \Leftrightarrow A=\left(3-y\right)^2+3y^2+2y+5\\ A=y^2-6y+9+3y^2+2y+5\\ A=\left(4y^2-4y+1\right)+13=\left(2y-1\right)^2+13\ge13\\ A_{min}=13\Leftrightarrow y=\dfrac{1}{2}\Leftrightarrow x=3-\dfrac{1}{2}=\dfrac{5}{2}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)