căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 .tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
Căn bậc 4 của x , căn bậc 3 của y , căn bậc 2 của z = A
X + Y + Z + A = 120
tinhs A,X,Y,Z
Cho căn[x^2+căn bậc 3(x^4y^2)] + căn[y^2+căn bậc 3(x^2y^4)] = a.?
C/m:căn bậc 3 của x^2 + căn bậc 3 của y^2 = căn bậc 3 của a^2
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
(căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) + (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1)-1 : (căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) - (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1) + 1
tìm x,y,z biết căn bậc 2 của((x - 2024) ^ 2) + |x + y - 4z| +y^ 2 . căn bậc 2 của 5 =0
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.
Ta có: sqrt(x – 2024)” >0 V │x + y − 4z ≥ 0 √x; y; z y2. sqrt5> 0 Vy ⇒ sqrt(x − 2024)2 + |x + y − 4z| + y². sqrt5 0
Vx; y; z
Mà
sqrt(x − 2024)² + |x + y − 4z| + y². sqrt5 - −4z|+ =
Dấu " = " xảy ra khi:
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của b+căn bậc ba của c
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của bạn+căn bậc ba của c