căn bậc 2 của (x) +căn bậc 2 của (y)+căn bậc 2 của (z)=2 ; x+y+z=2 tính P= căn bậc 2 của ((x+1)(y+1)(z+1)) ((căn bậc 2 của (x) /(x+1))+(căn bậc 2 của (y) / (y+1))+(căn bậc 2 của (z) / (z+1))
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
Nếu ax3=bx3=cx3 và 1/x +1/y+1/z=1 chứng minh căn bậc ba của ax2+bx2+cx2=căn bậc ba của a + căn bậc ba của b + căn bậc ba của c
Các bạn giải giúp mình nha!
Câu 1: Tìm tất cả các số nguyên x=>y=>z=>0 sao cho:
xyz + xy+ yz + xz +x+y+z=2011
Câu 2 Giải phương trình :
4(x^2+2)^2 = 25(x^3+1)
Câu 3 Tìm Max ,Min của
P= 2x^2 - xy - y^2
Với x, y thỏa mãn: x^2 + 2xy+ 3y^2=4
Câu 4 Cho a,b,c là độ dài ba cạnh của tam giác chứng minh:
1/(a^2+bc) + 1/(b^2+ac)+1/(c^2+ab) <= (a+b+c)/(2abc)
Câu 5 Tìm các số hữu tỉ x,y thỏa mãn:
x(căn bậc hai của(2011) + căn bậc hai của(2010)) + y(căn bậc hai của(2011) - căn bậc hai của(2010)) = Căn bậc hai của(2011^3) + Căn bậc hai của(2010^3)
(căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) + (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1)-1 : (căn bậc 2 của x + 1)/(căn bậc 2 của xy + 1) - (căn bậc 2 của xy + căn bậc 2 của x)/( căn bậc 2 của xy - 1) + 1
((căn bậc hai của x)/2 x -2 + 3- (căn bậc hai của x)/2x -2 );(( căn bậc hai của x) +1/x+(căn bậc hai của x )+1 + (căn bậc hai của x)+2/ x( căn bậc hai của x )-1) rut gon
1+x+y= căn bậc 2 x + căn bậc 2 xy + căn bậc 2 y
1+x+y=căn bậc 2 x +căn bậc 2 xy +căn bậc 2 y