Cho A = 102016 +102015 +102014 +102013 +8
C/m A chia hết cho 24
C/m A không phải số chính phương
Cho biểu thức: M = 5 + 5 2 + 5 3 + … + 5 80 . Chứng tỏ rằng: a) M chia hết cho 6. b) M không phải là số chính phương.
tự giải hả trời
cho bn bt lun nha
bn lm đúng rùi
đúng nha
a) Ta có: M = 5 + 5 2 + 5 3 + … + 5 80 = 5 + 5 2 + 5 3 + … + 5 80 = (5 + 5 2) + (53 + 5 4) + (55 + 5 6) +... + (579 + 5 80) = (5 + 5 2) + 5 2 .(5 + 5 2) + 5 4(5 + 5 2) + ... + 5 78(5 + 5 2) = 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 5 2 + 5 4 + ... + 5 78) 30 b) Ta thấy : M = 5 + 5 2 + 5 3 + … + 5 80 chia hết cho số nguyên tố 5. Mặt khác, do: 5 2+ 5 3 + … + 5 80 chia hết cho 5 2 (vì tất cả các số hạng đều chia hết cho 5 2) M = 5 + 5 2 + 5 3 + … + 5 80 không chia hết cho 5 2 (do 5 không chia hết cho 5 2) VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí M chia hết cho 5 nhưng không chia hết cho 5 2 M không phải là số chính phương. (Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p 2).
Đúng ko???
M= 5+5^2+...+5^80
M= (5+5^2)+(5^3+5^4)+...+(5^79+5^80)
M= 5(1+5)+5^3(1+5)+...+5^79(1+5)
M= 5.6+5^3.6+...+5^79.6
M= 6(5+5^3+...+5^79) chia hết cho 6
=> M chia hết cho 6.
Cho A = 8 + 102009+102010+102011+102012
a, C/m A chia hết cho 24
b, C/m A không phải số chính phương
Các số sau có phải số chính phương hay ko. Các bn làm theo mẫu nha!
a) A=2004000
M: Số 2004000 chia hết cho 2, cho 5 => Số đó chia hết cho 10
Trong đó: 2 và 5 phải có số muc chẵn => Số 0 tận cùng là số chẵn
Vậy A = 2004000 không phải là số chính phương.
b) B = \(2001^{2001}\)
B ko phai SCP vi B= 20012000 *2001 . theoDLSCP thi 2001 phai la SCP the nhung no chia het cho 3 nhunhg khong chia het cho 9 nen ko la SCP
Cho biểu thức: M = 5 + 52 + 53 + ... + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a)\(M=5+5^2+5^3+5^4+...+5^{79}+5^{80}\)(có 80 số hạng)
\(M=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)(có 40 nhóm)
\(M=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(M=5\cdot6+5^3\cdot6+...+5^{79}\cdot6\)
\(M=6\left(5+5^3+...+5^{79}\right)⋮6\)
Cho A = 3 + 3^2 + 3^3 + ... + 3^120. Chứng tỏ:
a, A chia hết cho 13; 40.
b, A không chia hết cho 9.
c, 2A + 3 không phải là số chính phương
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
Cho biểu thức: M = 5 + 52 + 53 + ... + 580. Chứng tỏ rằng:
a. M chia hết cho 6
b. M không phải là số chính phương
a) M = 5 + 52 + 53 + ... + 580 (có 80 số hạng; 80 chia hết cho 2)
M = (5 + 52) + (53 + 54) + ... + (579 + 580)
M = 5.(1 + 5) + 53.(1 + 5) + ... + 579.(1 + 5)
M = 5.6 + 53.6 + ... + 579.6
M = 6.(5 + 53 + ... + 579) chia hết cho 6
Chứng tỏ M chia hết cho 6
b) Ta thấy các lũy thừa của 5 từ 52 trở đi đều chia hết cho 5 và 25
=> 52; 53; ...; 580 đều chia hết cho 5 và 25
Mà 5 chia hết cho 5 nhưng không chia hết cho 25
=> M chia hết cho 25 nhưng không chia hết cho 25, không phải số chính phương
Chứng tỏ M không phải số chính phương
a. Ta có: M = 5 + 52 + 53 + ...+ 580
= 5 + 52 + 55 + ... + 580 = (5 + 52) + (53 + 54) + (55 + 56) + ... + (579 + 580)
= (5 + 52) + 52 . (5 + 52) + ... + 578(5 + 52)
= 30 + 30 . 52 + 30 . 54 + ... + 30 . 578 = 30(1 + 52 + 54 + ... + 578) chia hết cho 30
b. Ta thấy : M = 5 + 52 + 53 + ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
Cho A = 3 + 3 mũ 2 + ... + 3 mũ 30
a, Chứng minh A chia hết cho 13 và A chia hết cho 52
b, A có phải là số chính phương không? Vì sao?
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
Cho biểu thức: M = 5 + 52 + 53 + … + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
Cho biểu thức M = 5 + 52 + 53 + ... + 580 . Chứng tỏ rằng
a) M chia hết cho 6
b) M không phải là số chính phương
a) M= 5+5^2+5^3+.....+5^80
M=5^1×1+5^1×5+5^3×1+5^3×5+...+5^79×1+5^79×5
M=5^1×(1+5)+5^3×(1+5)+...+5^79×(1+5)
M=5^1×6+5^3×6+...5^79×6
M=6×(5^1+5^3+...+5^79
Có 6 chia hết cho 6 nênM chia hết cho 6
b)M không là số chính phương vì có 6 chia hết cho 6 nhưng không chia hết cho 36 nên M không là số chính phương
a) M= (5+52+53+54)+...+(577+578+579+580)
M=5(1+5+52+53)+...+577(1+5+52+53)
M=5*156+...+577*156
M=5*(26*6)+...+577*(26*6)
Vậy M chia hết cho 6
b) Tôi không biết thông cảm nhé
a) M=5+52+53+.....+580
<=> M=(5+52)+(53+54)+....+(579+590)
<=> M=5(1+5)+53(1+5)+......+579(1+5)
<=> M=5.6+53.6+.....+579.6
<=> M=6(5+53+.....+579)
=> M chia hết cho 6