Cho (o,r) vẽ đây AB sao cho góc AOB=120°
a/ tính số đo cung nhỏ AB, cung lớn AB
b/ tính số đo hai góc còn lại của ∆OAB
c/ tính AB biết R=3cm
Cho (o,r) vẽ đây AB sao cho góc AOB=120°
a/ tính số đo cung nhỏ AB, cung lớn AB
b/ tính số đo hai góc còn lại của ∆OAB
c/ tính AB biết R=3cm
a: Số đo cung nhỏ là 120 độ
Số đo cung lớn là 360-120=240(độ)
b: Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
Suy ra: \(\widehat{OAB}=\widehat{OBA}=\dfrac{180^0-120^0}{2}=30^0\)
a: Số đo cung nhỏ là 120 độ
Số đo cung lớn là 360-120=240(độ)
b: Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
Bài 1: Cho đường tròn ( O ; R ), điểm A và B nằm trên đường tròn sao cho góc AOB = 120 độ, điểm C nằm trên cung AB sao cho góc AOC = 160 độ.
a) Liệt kê các góc ở tâm, và cho biết góc đó chắn cung nào?
b) Tính số đo cung nhỏ AB và cung lớn AnB, cung nhỏ BC, cung lớn BnC
Bài 2: Cho đường tròn ( O ; R ), dây AB = R
a) Tính số đo cung nhỏ AB và cung lớn AnB
b) Tính độ dài đoạn OI theo R với I là trung điểm AB
c) Tiếp tuyến A tại B cắt nhau tại M. Chứng minh 3 điểm O, I và M thẳng hàng
2:
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
=>Số đo cung nhỏ AB là 600
Số đo cung lớn AB là 360-60=3000
b: ΔOAB đều
mà OI là đường trung tuyến
nên \(OI=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\)
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường trung trực của AB(2)
Từ (1),(2) suy ra O,I,M thẳng hàng
Cho đường tròn (O; R). Vẽ dây AB sao cho số đo của cung nhỏ AB bằng \(\dfrac{1}{2}\) số đo cung lớn AB.
a) Tính góc ở tâm B
b) Tính độ dài dây AB theo R
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
Từ O kẻ đg thg vg góc vs AB tại H
=> AH=BH=AB/2 = R căn 3 /2
Theo hệ thức lượng trong tam giác AHO vuông ở H ta có
SIN góc AOH = R căn 3 /2 : R
= căn 3/2 = 60
=> Góc AOB = 2 góc AOH= 2*60 =120
SĐ AB nhỏ =120
SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
tập toán lớp 9 cho đường tròn (O,R).Một điểm A ở ngoài đường tròn sao cho OA=2R.Vẽ các tiếp tuyến AB,AC đến (O) (với AB là các tiếp điểm) a/ tính số đo các góc AOB và AOC b/ Tính số đo cung nhỏ và cung lớn BC
Câu a:
Xét tg vuông AOB có BO=R=OA/2 => ^OAB=30 (góc đối diện với cạnh góc vuông băng nửa cạnh huyền thì bằng 30)
=> ^AOB=90-^OAB=90-30=60
Tương tj c/m đươc ^AOC=60
Câu b:
Từ câu a => ^BOC=^AOB+^AOC=120 => sđ cung BC nhỏ = 120 (sđ góc ở tâm = sđ cung chắn)
=> sđ cung BC lớn = 360-sđ cung BC nhỏ = 360-120=240
Bài 1: Cho đường tròn (O;R).Một điểm A ở bên ngoài đường tròn sao cho OA= 2R.Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm)
a. Tính số đo các góc AOB và BOC
b.Tính số đo cung nhỏ và cung lớn BC
Bài 2: Cho nửa đường tròn (O) đường kính AB, M là điểm tùy ý trên nửa đường tròn (M khác A,B).Kẻ MH ⊥ AB (H ∈ AB) Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn.Vẽ hai nửa đường tròn tâm O1, đường kính AH và tâm O2, đường kính BH. MA và MB cắt hai nửa đường tròn O1 và O2lần lượt tại P và Q.
a. Chứng minh MH = PQ
b. Chứng minh ΔMPQ ᔕ ΔMBA
c. Chứng minh PQ là tiếp tuyến chung của 2 đường tròn O1 và O2
giải b2:
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c,\(\widehat{PMH}=\widehat{MBH}\Rightarrow\widehat{PQH}=\widehat{O_2QP}\) => PQ là tiếp tuyến của \(\left(O_2\right)\)
Tương tự PQ cũng là tiếp tuyến \(\left(O_1\right)\)
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU
Bài 1: Cho (O) dây cung AB. Tiếp tuyến tại A và B cắt nhau tại M. Biết AMB = 50°
a) Tính số đo cung AB.
b) Trên nửa mp bờ OB (không chứa điểm A), kẻ đường thẳng d qua O và song song với BM, d cắt (O) tại D. Tính số đo cung AD.
Bài 2: Cho (O;R). Một điểm A ở ngoài đường tròn sao cho OA=2R. Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm).
a) Tính số đo các góc AOB và BOC.
b) Tính số đo cung nhỏ và cung lớn BC.
** VẼ HÌNH GIÙM MIK VỚI CẢM ƠN NHÌU