Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
van nguyen
Xem chi tiết
Đinh Đức Hùng
2 tháng 8 2017 lúc 10:47

Dễ vậy mà ko làm đc àk

\(a_1.a_2=b_1.b_2\Rightarrow\frac{a_1}{b_1}=\frac{b_2}{a_2}\)

\(\Rightarrow\frac{a_1}{b_1}+\frac{a_2}{b_2}=\frac{b_2}{a_2}+\frac{a_2}{b_2}\ge2\sqrt{\frac{b_2}{a_2}.\frac{a_2}{b_2}}=2\) (AM - GM)

Đào Lê Anh Thư
2 tháng 8 2017 lúc 10:55

có a1.a2=b1.b2

=> a1/b1=b2/a2

có \(\frac{a1}{b1}+\frac{a2}{b2}=\frac{b2}{a2}+\frac{a2}{b2}\)

áp dụng bất đẳng thức cosi cho 2 số dương có

\(\frac{b2}{a2}+\frac{a2}{b2}\ge2\sqrt{\frac{b2}{a2}.\left(\frac{a2}{b2}\right)}=2\)(đpcm)

Tèoooooooooo
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 11:21

Chọn A

nguyen tien hai
Xem chi tiết
huy nguyễn
Xem chi tiết
Huỳnh Quang Sang
26 tháng 8 2019 lúc 16:44

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

Nguyễn Hoàng Long
26 tháng 8 2019 lúc 16:41

mik chịu thui xin lỗi bạn

dang  nhat minh
Xem chi tiết
Tiểu Thư họ Nguyễn
24 tháng 1 2017 lúc 10:07

Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ

Khi đó tất cả các hiệu (a1−b1,a2−b(a1−b1,a2−b2,...,an−bn)">) lẻ
Mà có 2013 hiệu nên tổng các hiệu a1−b1+a2−b2+...+a2013−b2013 lẻ
Hay (a1+a2+...+a2013)−(b1+b2+...+b2013) lẻ . (*)
Mặt khác , theo đề ra ta có : (a1+a2+...+a2013)−(b1+b2+...+b2013) = 0 ( mâu thuẫn với *)
Vậy điều giả sử sai hay (a1−b1)(a2−b2)...(a2013−b2013) là số chẵn
Hoàng Quốc Anh
24 tháng 1 2017 lúc 11:33

Thank you Tiểu Thư họ Nguyễn và Đặng Nhật Minh

Ngô Duy Phúc
Xem chi tiết
CAO THỊ VÂN ANH
Xem chi tiết
Nguyễn Thị Thúy Hường
27 tháng 12 2015 lúc 20:18

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

Phanquocvuong
Xem chi tiết
Huyen Vu
13 tháng 9 2016 lúc 8:00

 a1/a2 = b1/b2 = c1/c2 = k

a1=k.a2, b1=k.b2, c1=k.c2

Biểu thức trở thành

√(k.a2 + k.b2 + k.c2).(a2 + b2 + c2)= √k.a2.a2 + √k.b2.b2 + √k.c2.c2

√k.(a2+b2+c2)2 = a2. √k + b2. √k + c2. √k

(a2+b2+c2). √k = (a2+b2+c2). √k (hiển nhiên đúng)

Suy ra điều phải chứng minh

SNSD
Xem chi tiết