Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Anh
Xem chi tiết
Son GoHan
23 tháng 4 2016 lúc 16:22

Gọi ƯCLN(21n+4,14n+3) là d.

=>21n+4 chia hết cho d

14n+3 chia hết cho d

=>[3(14n+3)-2(21n+4)chia hết cho d

=>[42n+9-42n-8] chia hết cho d

=> 1 chia hết cho d

=> d=1

=> đpcm

Nguyễn Ngọc Anh
Xem chi tiết
Lê Chí Cường
29 tháng 8 2015 lúc 20:44

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

=>ĐPCM

phạm văn tuấn
13 tháng 1 2018 lúc 19:32

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số 21n+414n+3 là phân số tối giản

=>ĐPCM

Lương Yến Nhi
21 tháng 6 2020 lúc 17:32

Đồ ngu, cái j cũng hỏi, tưởng thế là hay à

Fuck You

Khách vãng lai đã xóa
Nezuko Kimtesuonyaibai
Xem chi tiết
shitbo
13 tháng 8 2019 lúc 16:52

\(d=\left(21a+4,14a+3\right)\Rightarrow\hept{\begin{cases}21a+4⋮d\\14a+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42a+8⋮d\\42a+9⋮d\end{cases}}\Rightarrow\left(42a+9\right)-\left(42a+8\right)=1⋮d\Rightarrow d=1\) 

\(\Rightarrow\text{đ}cpm\)

Lê Tài Bảo Châu
13 tháng 8 2019 lúc 16:53

Gọi \(\left(21n+4;14n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(21n+4\right)⋮d\\3.\left(14n+3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên

Gọi UCLN 21n + 4 và 14n + 3 là d

\(\Rightarrow21n+4⋮d;14n+3⋮d\)

\(\Rightarrow\left(21n+4\right).2⋮d\Rightarrow42n+8⋮d\)

\(\Rightarrow\left(14n+3\right).3⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left[\left(42n+9\right)-\left(42n+8\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow21n+4\)và \(14n+3NTNN\)

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản

Sakura
Xem chi tiết
Trịnh Việt Anh
18 tháng 9 2016 lúc 22:29

k đúng cho mình với:

gọi d là Ư(21n+4;14n+3)

=>21n+4 và 14n+3 chia hết cho d

=>42n+8 và 42n+9 chia hết cho d

=>42n+9-42n+8 chia hết cho d

=>1 chia hết cho d

=>d thuộc ước của 1

=>d thuộc -1 và 1

=>21n+1/14n+3 là phân số tối giản

Đinh Đức Hùng
10 tháng 2 2017 lúc 13:12

Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :

21n + 4 ⋮ d và 14n + 3 ⋮ d

<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d

<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d

=> (42n + 9) - (42n + 8) ⋮ d

=> 1 ⋮ d => d = 1

=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )

Nguyễn minh phú
Xem chi tiết
Tran Trinh
Xem chi tiết
Vũ Nữ Hoàng Duyên
11 tháng 3 lúc 13:44

rrxdưAsse ddgjug fcrddf3ưeesfffdd

Kurumi
Xem chi tiết
Thắng Nguyễn
20 tháng 5 2016 lúc 17:17

gọi d là UCLN (21n+4;14n+3)

ta có:

[3(14n+3]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản vs mọi n

Nguyễn Trần Bảo Đạt_OG97
15 tháng 7 2021 lúc 16:15

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

Khách vãng lai đã xóa
Hạ Hoa
Xem chi tiết
Phan Ba Gia Hien
21 tháng 4 2020 lúc 15:29

https://olm.vn/hoi-dap/detail/58560011025.html

 Bạn tham khảo nhé

Khách vãng lai đã xóa
Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa