Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vietha2k9
Xem chi tiết
Hắc Hoàng Thiên Sữa
28 tháng 5 2021 lúc 16:48

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Nguyễn Thị Hoài Thu
Xem chi tiết
Kẻ Bí Mật
1 tháng 1 2016 lúc 21:06

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

Nguyễn Bùi Việt Hà
Xem chi tiết
Đoàn Đức Hà
28 tháng 5 2021 lúc 15:50

\(B=10^n+72n-1\)

\(=10^n-1-9n+81n\)

\(=99...9-9n+81n\)(\(n\)chữ số \(9\))

\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))

\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\)

Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).

Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).

Khách vãng lai đã xóa
Nguyễn Bùi Việt Hà
28 tháng 5 2021 lúc 16:04

mod là gì vậy Đoàn Đức Hà ơi

Khách vãng lai đã xóa
InuYashA
Xem chi tiết
What Coast
Xem chi tiết
barcalona
Xem chi tiết
Băng Hải Tặc Mũ Rơm
22 tháng 10 2017 lúc 14:27

qqqqqqqqq

Bùi Vĩnh Hà
Xem chi tiết
InuYashA
Xem chi tiết
Vân Khánh
Xem chi tiết