Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hayamiko
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Mi Tạ Tiểu
Xem chi tiết
Đạt Trần Tiến
22 tháng 1 2018 lúc 21:41

Ta có:

(n+1)2-n2=2n+1=n+(n+1)

=> A=\(\frac{2+1}{2^21^2}+\frac{2+3}{2^23^2}+... +\frac{2009+2010}{2009^22010^2}=1-\frac{1}{2^2}+\frac{1}{2^2} -\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2} <1 \)

Hảo Đào thị mỹ
Xem chi tiết
Cao Hoàng Minh Nguyệt
20 tháng 5 2016 lúc 10:20

3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2

=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100

= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100

= 1/1-1/4040100

= 1-1/4040100 < 1

Chúc bạn học tốt!

Đặng Phan Khánh Huyền
20 tháng 5 2016 lúc 7:11

câu hỏi là tính tổng à

Hảo Đào thị mỹ
20 tháng 5 2016 lúc 8:46

k bạn ơi nó là cm  cái tổng đó <1 

ITACHY
Xem chi tiết
Akai Haruma
7 tháng 7 2020 lúc 0:58

Lời giải:

Đặt $a=2009$

\(\sqrt{2009^2+2009^2.2010^2+2010^2}=\sqrt{a^2+a^2(a+1)^2+(a+1)^2}\)

\(=\sqrt{a^2+a^2(a^2+2a+1)+(a+1)^2}\)

\(=\sqrt{a^2+a^4+2a^3+a^2+(a+1)^2}=\sqrt{a^4+2a^2(a+1)+(a+1)^2}\)

\(=\sqrt{(a^2+a+1)^2}=a^2+a+1=2009^2+2009+1\) là 1 số nguyên dương

Ta có đpcm.

uzumaki naruto
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 5 2016 lúc 7:16

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

o0o Vi _Sao _Dem _Trang...
20 tháng 5 2016 lúc 7:23

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

loc
20 tháng 5 2016 lúc 10:13

555555+9973938782858853963.7

73

7757

7

77

Chu Văn An
Xem chi tiết
Đặng Kiều Trang
Xem chi tiết
Đặng Kiều Trang
Xem chi tiết