Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Chí Bảo
Xem chi tiết
Đoàn Đức Hà
11 tháng 4 2021 lúc 19:54

a) Đặt \(d=\left(n+3,2n+7\right)\).

Suy ra 

\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)

\(\Rightarrow d=1\).

Do đó ta có đpcm.

b) Tương tự ý a).

Khách vãng lai đã xóa
Phạm Chí Bảo
11 tháng 4 2021 lúc 20:13

trả lời giúp mình nnhe bạn

Khách vãng lai đã xóa
Pham Huy Bach
Xem chi tiết
HELLO^^^$$$
11 tháng 4 2021 lúc 20:19

a,Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

HELLO^^^$$$
11 tháng 4 2021 lúc 20:21

a,Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

a) Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

b) Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2023 lúc 12:23

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Sinh Nguyễn Thành
10 tháng 4 2023 lúc 21:39

loading...

Nguyễn Phi Hùng
Xem chi tiết
Nguyễn Thị Thanh Ngọc
21 tháng 10 2015 lúc 10:53

vào câu hỏi tương tự  dựa theo cách lm  để giải nhé 

Trần Nhật Minh Anh
Xem chi tiết
nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

Công chúa song tử
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
28 tháng 3 2021 lúc 21:47

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Khách vãng lai đã xóa
Giang Thị Thu Trang
Xem chi tiết
nguyễn phước lộc
12 tháng 3 2023 lúc 19:03

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (  

nguyễn phước lộc
12 tháng 3 2023 lúc 19:04

đấy nè Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản

 

nguyen minh tam
Xem chi tiết
Wall HaiAnh
14 tháng 2 2018 lúc 21:41

Gọi d là ƯCLN(4n+1,6n+1)

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)

\(\Rightarrow24n+6-24n-4⋮d\)

\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d=\left\{1;2\right\}\)

Mà 4n+1 không chia hết cho 2

      6n+1 không chia hết cho 2

\(\Rightarrow d=1\)

Vậy \(\frac{4n+1}{6n+1}\)là phân số tối giản

My
14 tháng 2 2018 lúc 21:49

Gọi d là ước chung của 4n+1 và 6n+1.                             (d€ N*)

\(\Rightarrow4n+1⋮d\)                 \(\orbr{\begin{cases}\Rightarrow3.\left(4n+1\right)⋮d\\\Rightarrow2.\left(6n+1\right)⋮d\end{cases}}\)    

\(\Rightarrow6n+1⋮d\)                     

\(\Rightarrow3.\left(4n+1\right)-2.\left(6n+1\right)⋮d\)

        \(12n+3-12n-2⋮d\)

                   \(\Rightarrow1⋮d\)

         \(\Rightarrow d=1\)

Vậy phân số\(\frac{4n+1}{6n+1}\) là phân số tối giản