cho A=6n+2/2n+1
với mọi số tư nhiên n,chứng tỏ rằng A là phân số tối giản
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 3/2n + 7
b) 3n + 7/6n + 15
a) Đặt \(d=\left(n+3,2n+7\right)\).
Suy ra
\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)
\(\Rightarrow d=1\).
Do đó ta có đpcm.
b) Tương tự ý a).
trả lời giúp mình nnhe bạn
Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a) n + 3/2n + 7
b) 3n + 7/6n + 15
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a) Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
b) Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Chứng tỏ rằng với mọi số tự nhiên n thì P= \(\dfrac{3n+2}{6n+5}\) là một phân số tối giản.
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
Chứng tỏ rằng phân số A= \(\frac{6n+5}{2n+1}\)
là phấn số tối giản với mọi n thuộc N
vào câu hỏi tương tự dựa theo cách lm để giải nhé
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng các phân số 2n+1/3n+2;4n+1/6n+1 là phân số tối giản với mọi số tự nhiên n
\(\frac{2n+1}{3n+2}\)
Gọi \(d\inƯC\left(2n+1;3n+2\right)\)
Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow6n+4-6n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
\(\frac{4n+1}{6n+1}\)
Gọi \(d\inƯC\left(4n+1;6n+1\right)\)
Ta có :
\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow12n+3-12n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Cho a bằng n +1 trên 2n+3. Chứng tỏ rằng A là phân số tối giản với mọi n là số nguyên tố
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (
đấy nè Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản
chứng tỏ rằng các phân số 4n+1/6n+1laf phân số tối giản với mọi số tự nhiên n
Gọi d là ƯCLN(4n+1,6n+1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{1;2\right\}\)
Mà 4n+1 không chia hết cho 2
6n+1 không chia hết cho 2
\(\Rightarrow d=1\)
Vậy \(\frac{4n+1}{6n+1}\)là phân số tối giản
Gọi d là ước chung của 4n+1 và 6n+1. (d€ N*)
\(\Rightarrow4n+1⋮d\) \(\orbr{\begin{cases}\Rightarrow3.\left(4n+1\right)⋮d\\\Rightarrow2.\left(6n+1\right)⋮d\end{cases}}\)
\(\Rightarrow6n+1⋮d\)
\(\Rightarrow3.\left(4n+1\right)-2.\left(6n+1\right)⋮d\)
\(12n+3-12n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số\(\frac{4n+1}{6n+1}\) là phân số tối giản