Chứng minh rằng với mọi số nguyên dương n thì (5n+15)(n+6) chia hết cho 10
Chứng minh rằng với mọi số nguyên n thì (5n+15)(n+6) chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n ta đều có n3 + 5n chia hết cho 6
Ta co : \(n^3+5n=n^3-n+6n=n\left(n^2-1\right)+6n=n\left(n-1\right)\left(n+1\right)+6n\)
Vi n la so nguyen duong nen suy ra : Tich cua ba so nguyen duong lien tiep :
\(n-1,n,n+1\) chia het cho 2 va 3
\(n\left(n-1\right)\left(n+1\right)\) chia het cho 6
\(\Rightarrow n^3+5n\) chia het cho 6 (dpcm)
**** nhe
cho biểu thức A=n^2+5n+10. Chứng minh rằng với mọi số nguyên n thì A ko chia hết cho 25
Chứng minh rằng: Với mọi số nguyên dương n thì : chia hết cho 10
Bạn ghi lại biểu thức đi bạn
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=\left(3^n\cdot9+3^n\right)-\left(4\cdot2^n+2^n\right)\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}=10\left(3^n-2^{n-1}\right)⋮10\)
Chứng minh rằng:
\(6^n\)\(.5\) chia hết cho 10 với mọi số nguyên dương n
Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$
$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$
Với $n$ nguyên dương $\Rightarrow n-1\ge 0$
Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$
hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.
chứng minh rằng: A=5n(5n+1)−6n(3n+2n)A=5n(5n+1)−6n(3n+2n) chia hết cho 91 với mọi số nguyên dương n
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
Chứng minh rằng với mọi số tự nhiên n thì:
a/ (n+3)(n+10) chia hết cho 2
b/ (n+3)(n+6) chia hết cho 2
c/ (5n+7)(4n+6) chia hết cho 2
Chứng minh rằng Với mọi số nguyên n thì n^5+5n^3+4n chia hết cho 5
Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3
ta chứng minh như sau:
n^5-5n^3+4n=
(n-2)(n-1)n(n+1)(n+2)
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8,
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm