CMR: 1/(1.2.3)+1/(2.3.4)+...+1/(98.99.100)=4949/19800
chưng tỏ 1/1.2.3 +1/2.3.4 + 1/3.4.5+...+1/98.99.100=4949/19800
Bạn cho sai đề rồi !
Sửa : Chứng tỏ : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{9900}\)
Ta có : \(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(=\frac{99.100-2}{2.99.100}\)
\(=\frac{4949}{9900}=VP\)
Study well ! >_<
chứng tỏ
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 = 4949/19800
= 1/2.(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + 1/4.5 - ........+1/98.99 - 1/99.100 )
=1/2.(1/1.2 - 1/99.100)
=1/2 . 4949/9900
=4949/19800
CHỨNG TỎ: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\)
Lưu ý: ko pk toán lớp1
\(\frac{2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\right)}{2}\)
(\(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\)) : 2
(\(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)) : 2
mình làm tiếp nha lúc nãy lỡ tay
\(\frac{\left(\frac{1}{2}-\frac{1}{9900}\right)}{2}=\frac{4949}{19800}=VP\)
Vậy ....
a)Tìm các số nguyên x,y sao cho \(3xy+x-3y=6\)
b) CMR : \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}=\dfrac{4949}{19800}\)
a) Ta có: \(3xy+x-3y=6\)
\(\Rightarrow x\left(3y+1\right)-3y=6\)
\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)
Ta có bảng sau:
....
b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)
Vậy...
chứng tỏ : \(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+\(\frac{1}{3.4.5}\)+.........+\(\frac{1}{98.99.100}\)= \(\frac{4949}{19800}\)
giải gấp mk nha! nếu đúng mh tick cho.
Chứng minh rằng:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.98.100}=\frac{4949}{19800}\)
Biến đổi vế trái ta có:
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+..+\frac{1}{98\cdot99\cdot100}\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{4949}{19800}=VP\)
=>đpcm
Tìm x , biết:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+......+\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{4949}{19800}\)
Tính nhanh
A=6+16+30+48+...+19600+19998
B=2+5+9+14+...+4949+5049
C=1.2.3+2.3.4+3.4.5+...+98.99.100
A=6+16+30+48+...+19600+19998
2A = 1.3+2.4+3.5+...+99.101
B=2+5+9+14+...+4949+5049
2A = 1.4+2.5+3.6+...+99.102
C=1.2.3+2.3.4+3.4.5+...+98.99.100
4A = 1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+98.99.100.(101-97)
4A = 1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100
4A = 98.99.100.101
A=6+16+30+48+...+19600+19998
A : 2 = 3 + 8 + 15 + 24 + . . . + 9800 + 9999
A : 2 = 1.3 + 2.4 + 3.5 + 4.6 + . . . + 98.100 + 99.101
A : 2 = 1.[1+2] + 2.[1+3] + 3.[1+4] + 4.[1+5] + . . . + 98.[1+99] + 99.[1+100]
A : 2 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + 4.5 + . . . + 98 + 98.99 + 99 + 99.100
A : 2 = 1 + 2 + 3 + 4 + . . . + 199 + 1.2 + 2.3 + 3.4 + 4.5 + . . . + 98.99 + 99.100
A : 2 = 4950 + 333300
A = 676500
CMR:
\(\frac{1}{1.2.3}+\frac{1}{2.3.\text{4}}+\frac{1}{3.\text{4}.5}+...+\frac{1}{98.99.100}=\frac{\text{4}9\text{4}9}{19800}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
= \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\left(\text{đpcm}\right)\)
\(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}=VP\) (đpcm)