Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Dũng
Xem chi tiết
soyeon_Tiểu bàng giải
11 tháng 9 2016 lúc 11:09

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Phương Anh
11 tháng 9 2016 lúc 11:12

A = \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)= \(\frac{2}{3}.\frac{99}{100}\)= \(\frac{33}{50}\)
 

Trieu Minh Anh
11 tháng 9 2016 lúc 11:17

A = \(\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+....+\frac{2}{97\cdot100}\)

A = \(\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{97\cdot100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\cdot\frac{99}{100}\)

A = \(\frac{33}{50}\)

Hồ Thị Phương Thanh
Xem chi tiết
Thắng Nguyễn
2 tháng 5 2016 lúc 11:07

\(\frac{3}{2}A=\frac{3}{2}\left(\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\left(1-\frac{1}{100}\right)\)

\(\frac{3}{2}A=\frac{3}{2}\times\frac{99}{100}\)

\(A=\frac{99}{100}\)

Jessica Trần
2 tháng 5 2016 lúc 10:57

33/50

Lê Nguyễn Trang Linh
Xem chi tiết
Trần Việt Linh
11 tháng 9 2016 lúc 20:02

\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{33}{50}\)

Nguyễn Huy Tú
11 tháng 9 2016 lúc 20:03

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(\Rightarrow A=\frac{33}{50}\)

Phạm Tú Uyên
11 tháng 9 2016 lúc 20:08

\(\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}\)

Lê Thu Hà
Xem chi tiết
fan FA
13 tháng 7 2016 lúc 17:35

A = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

A= 2. ( \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\))

A= 2. ( \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\))

A= 2. (\(1-\frac{1}{100}\))

A= 2. \(\frac{99}{100}\)

A= \(\frac{99}{50}\)

Edogawa Conan
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
24 tháng 8 2015 lúc 10:55

\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Ngọc Quý
24 tháng 8 2015 lúc 10:58

\(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-...-\frac{2}{100}\right)\)

\(B=\frac{1}{3}.\left(2-\frac{2}{100}\right)=\frac{1}{3}.\frac{99}{50}==\frac{33}{50}\)

Phạm Thành Đạt
1 tháng 5 2016 lúc 14:13

Bạn ơi tớ hỏi Nguyễn Thiều Công Thành:

Vì sao lại = 2/3 . ( 3/1.4 + 3/4.7+ 3/7/10 + ... + 3/97.100 )  

bade siêu quậy
Xem chi tiết
Nếu Như Người đó Là Mình
18 tháng 2 2016 lúc 20:20

=2.(1/1.4+1/4.7+..+1/97.100)

=2.(1-1/4+1/4-1/7+...+1/97-1/100)

=2.(1-1/100)

=2.99/100=99/50

Nguyễn Anh Thư
18 tháng 2 2016 lúc 20:26

B = 2 (1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100 )

B = 2/3 ( 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100 )

B = 2/3 ( 1/1 - 1/4 + 1/4 -1/7 + 1/7 - 1/10 + ...+ 1/97 - 1/100 )

B = 2/3 ( 1/1 - 1/100 ) = 2/3 . 99/100 = 33/50

Bạn lưu ý ở bước thứ 3 với công thức này d/a.b = 1/a - 1/b với d = a-b. BẠn cứ dùng công thức này mà ko cần giải thích vì công thức này khá phổ biến. Nếu phải giải thích thì bạn cứ dùng công thức này để giải thích.

Ờ bước thứ hai mình làm như vậy vì để đưa về công thức mà mình nói.

Chúc bạn học tốt!

Xem chi tiết
Hasune Miku
8 tháng 3 2017 lúc 21:06

anh ơi ,toán này hồi em học lớp 4 còn biết thế mà anh ko biết, gợi ý nha:toán này thuộc dạng sai phân

Duong Minh Hieu
8 tháng 3 2017 lúc 21:08

\(\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(\frac{3}{2}A=1-\frac{1}{100}\)

\(\frac{3}{2}A=\frac{99}{100}\)

\(A=\frac{33}{50}\)

k minh nha

Nguyễn Thanh Tùng
8 tháng 3 2017 lúc 21:19

bài này dễ thế mà không giải được hả bạn

_Nhạt_
Xem chi tiết
Trường
10 tháng 4 2019 lúc 20:16

\(A=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\) 

\(=2.\left(\frac{1}{1}-\frac{1}{100}\right)\) 

\(=2.\frac{99}{100}\) 

\(=\frac{99}{50}\)

Nguyễn Phạm Hồng Anh
10 tháng 4 2019 lúc 20:16

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

=>  \(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

=> \(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Study well ! >_<

Vương Hải Nam
10 tháng 4 2019 lúc 20:17

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

pham tu anh
Xem chi tiết
pham tu anh
6 tháng 2 2015 lúc 20:44

có phải là 99/100 đúng không

 

pham tu anh
6 tháng 2 2015 lúc 21:00

mình cần gấp lắm có ai giúp giupf mình với!

 

Nguyễn Lương Bảo Tiên
6 tháng 2 2015 lúc 21:39

Mình ko chắc lắm, nếu sai thì xin lỗi nhiều

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=2.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)

\(A=2.\left(\frac{1.3}{1.4.3}+\frac{1.3}{4.7.3}+\frac{1.3}{7.10.3}+...+\frac{1.3}{97.100.3}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{4}{1.4}-\frac{1}{1.4}+\frac{7}{4.7}-\frac{4}{4.7}+\frac{10}{7.10}-...-\frac{97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)