cho ∆ ABC biết góc B =3 góc C =90°tính góc A
cho ∆ABC biết góc b =3.góc c=90°.tính số đo góc A
\(\widehat{A}=180^0-90^0-30^0=60^0\)
cho tam giác ABC . tính góc A , góc B , góc C biết :
a) góc A + góc B = góc C +90o và góc A = góc C +20o
b) 5. góc A = 3.góc B và 2. góc B = góc C
c) góc A = góc B = góc C = 3:5:7
b: Theo đề,ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}\\\dfrac{b}{1}=\dfrac{c}{2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}=\dfrac{a+b+c}{3+5+10}=\dfrac{180}{18}=10\)
Do đó: a=30; b=50; c=100
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180}{15}=12\)
Do đó: a=36; b=60; c=84
Cho ∆ABC có góc B>90°. Từ B kẻ BD vuông góc vs AC( D trên AC). Từ A Kẻ AH vuông góc vs BC(H trên BC).
Tính góc HBA và góc C biết góc ABC - góc C=90°
1.Tính góc A, góc B, góc C của tam giác ABC biết :
a, góc C = (góc A + góc B) /2
b, 3* góc A = 5* góc B ; 2* góc B = 3* góc C
2. Cho tam giác ABC có góc A = 90 độ, kẻ AH vuông góc BC tại H. Gọi AD là phân giác của góc HAC của tam giác HAC .
a, CM: góc BAD = góc BDA
b, Cho góc C = 40 độ. Tính góc B, góc BDA và góc DAC
Cho tam giác ABC. biết
a, góc A= 60 độ, góc B= 70 độ. Tính C
b, góc A+góc C= 90 độ. tính B
c, góc A= góc B= góc C. tính mỗi góc của tam giác
d, góc A = góc C nhân với 3, góc B = góc C nhân với 2. tính mỗi góc của tam giác
Bài 1:
cho tam giác ABC . tính số đo các góc còn lại của tam giác , biết
a. góc A=90 độ ; góc C=32 độ
b. góc A : góc B : góc C = 2:7:1
c. góc B=75 độ và góc A : góc C = 3:2
giúp em với anh chị mai em thi rồi ạ
Giải
a) Xét \(\Delta ABC\) ta có :
\(\widehat{B}=\widehat{A}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
\(\widehat{B}=90^0+32^0=180^0\)
\(\widehat{B}=122^0=180^0\)
\(\widehat{B}=180^0-122^0=58^0\)
b)
Theo bài ra ta có : \(\widehat{A}:\widehat{B}:\widehat{C}=2:7:1\)
\(\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2+7+1}=\dfrac{180^0}{10}=18^0\)
\(+)\)\(\dfrac{\widehat{A}}{2}=18^0\Rightarrow\widehat{A}=18^0\times2=36^0\)
\(+)\)\(\dfrac{\widehat{B}}{7}=18^0\Rightarrow\widehat{B}=18^0\times7=126^0\)
\(+)\)\(\dfrac{\widehat{C}}{1}=18^0\Rightarrow\widehat{C}=18^0\times1=18^0\)
c)
Xét \(\Delta ABC\) ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí trong 3 góc cùng 1 tam giác )
\(\widehat{A}+75^0+\widehat{C}=180^0\)
\(\widehat{A}+\widehat{C}=180^0-75^0\)
\(\widehat{A}+\widehat{C}=105^0\)
Theo bài ra ta có :
\(\widehat{A}:\widehat{C}=3:2\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{C}}{2}=\dfrac{\widehat{A}+\widehat{C}}{3+2}=\dfrac{105^0}{5}=21^0\)
\(+)\)\(\dfrac{\widehat{A}}{3}=21^0\Rightarrow\widehat{A}=21^0\times3=63^0\)
\(+)\)\(\dfrac{\widehat{C}}{2}=21^0\Rightarrow\widehat{C}=21^0\times2=42^0\)
a)
Xét tam giác ABC có
\(A+B+C=180^o\\ =>90^o+B+32^o=180^o\\ =>B=58^o\)
b)
góc A: góc B: góc C tỉ lệ 2:7:1
=> \(\dfrac{A}{2}=\dfrac{B}{7}=\dfrac{C}{1}\)
tổng 3 góc tam giác bằng 180 độ
áp dãy tỉ số bằng nhau ta có
\(\dfrac{A}{2}=\dfrac{B}{7}=\dfrac{C}{1}=\dfrac{A+B+C}{2+7+1}=\dfrac{180}{10}=18\)
=> \(A=18\cdot2=36^o,B=18\cdot7=126^o,C=18\cdot1=18^o\)
c)
có
\(A+B+C=180^o\\ =>A+75^o+C=180^o\\ =>A+C=105^o\)
góc A : góc C tỉ lệ với 3:2
=> \(\dfrac{A}{3}=\dfrac{C}{2}\)
áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{A}{3}=\dfrac{C}{2}=\dfrac{A+C}{3+2}=\dfrac{105}{5}=21\)
\(=>A=21\cdot3=63^o,C=21\cdot2=42^o\)
1) cho tam giác ABC có góc A / 3 = goc B / 4 = góc C/5. Tính góc A,B,C
2) cho ABC có 2 . góc A = 3 . góc B = 4 . góc C. Tính góc A,B,C
3) cho ABC có góc A + góc B= góc C, góc B = 2 lần góc A. Vẽ BD là phân giác của góc ABC, D thuộc AC. Tính góc BDC, góc BDA.
4) Cho ABC có góc A = 90*, vẽ BE là phân giác của góc ABC, E thuộc AC. chứng minh : a) góc BEC là góc tù b) Tính góc C biết góc BEC = 110*
5) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB? b) Vẽ đường cao AH, tính góc HAD
6) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB? b) Vẽ đường cao AH, tính góc HAD
mỗi bạn giải giúp mik 1 câu nhé. đa tạ - sẽ tick nhaaaa. mình sắp kiểm tra bài này rồi pleaseee
#)Giải :
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)
Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)
Bài 2 :
Áp dụng tính chất tỉ lệ thức :
\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^
Cho tam giác ABC có góc A = 90 độ , đường cao AH
Biết BH = 25cm , HC = 64cm . Tính góc B , góc C
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=40(cm)
Xét ΔABH vuông tại H có
\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{40}{25}=\dfrac{8}{5}\)
\(\Leftrightarrow\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
Cho tam giác ABC góc A bằng 90 độ góc C bằng 30 độ . Tia phân giác của góc B cắt AC ở D . Tính AD biết AC bằng 3 cm