\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2011}{2012}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=1\frac{2011}{2012}\)
Tìm x biết:
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)\cdot x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
GPT :
a, \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}..\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
b, \(\left(\frac{0,6+\frac{3}{7}-\frac{2}{11}}{1+\frac{5}{7}-\frac{5}{11}}+\frac{\frac{2}{3}-1,5+\frac{2}{9}}{\frac{5}{3}-3,75+\frac{5}{9}}\right)+93x=\left(\frac{3737}{4545}-\frac{954954}{975975}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)-7.\left(x-3\right)\)
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)
GPT :
a, \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}..\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
b, \(\left(\frac{0,6+\frac{3}{7}-\frac{2}{11}}{1+\frac{5}{7}-\frac{5}{11}}+\frac{\frac{2}{3}-1,5+\frac{2}{9}}{\frac{5}{3}-3,75+\frac{5}{9}}\right)+93x=\left(\frac{3737}{4545}-\frac{954954}{975975}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)-7.\left(x-3\right)\)
Tìm x thuộc N, biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2012}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}\)
\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}\)
Theo bài ra ta có:
\(\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}=\frac{2011}{2013}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2013}{4026}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
=> x + 1 = 2013
=> x = 2013 - 1
=> x = 2012 \(\in\) N
Vậy x = 2012
Đặt S=1/3+1/6+1/10+..........+2/x(x+1)
1/2S=1/2[1/3+1/6+1/10+...+2/x(x+1)]
1/2S=1/6+1/12+1/20+......1/x(x+1)
1/2S=1/2.3+1/3.4+1/4.5+.....+1x(x+1)
1/2S=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1
1/2S=1/2-1/x+1
Vì S=2011/2013
suy ra (1/2-1/x+1):1/2=2011/2013
(1/2-1/x+1).2=2011/2013
1/2-1/x+1=2011/2013:2
1/2-1/x+1=2011/4026
1/x+1=1/2-2011/4026
1/x+1=1/2013
suy ra x+1=2013
x=2013-1
x=2012
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
Chính Xác 100% là X=5
k cho mink nhé các pạn
1.Tìm tất cả các số tự nhiên n thỏa mãn:
\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right)^{2n -1}+n.2^n=8192\)
2. So sánh A và B biết:
\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}\)
\(B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...+\frac{2012}{2000}\)
3. Tính \(\left(S-P\right)^{2016}\) biết:\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
4.Tìm x:
a) \(-1\frac{1}{56}:\left(\frac{1}{8}-\frac{1}{7}\right)-\frac{22}{\left|2.x-0,5\right|}=-1\frac{1}{30}:\left(\frac{1}{5}-\frac{1}{6}\right)\)
b) \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=2^x\)
c) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow2^x\cdot1+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=480\)
\(\Rightarrow2^x\left(1+2^1+2^2+2^3\right)=480\)
\(\Rightarrow2^x\cdot15=480\)
\(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2012}{1}+\frac{2011}{2}+...+\frac{2}{2011}+\frac{1}{2012}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\left(\frac{2011}{2}+1\right)+...+\left(\frac{2}{2011}+1\right)+\left(\frac{1}{2012}+1\right)+1\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2013}{2}+...+\frac{2013}{2011}+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=2013\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}\right)\)
\(\Rightarrow x=2013.\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}}\)
\(\Rightarrow x=2013\)
Vậy \(x=2013\)
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)