\(\frac{1}{2}+\frac{8}{9}-\frac{1}{2}\)
\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right).x=\frac{1}{9}+\frac{2}{8}+\frac{3}{7} +...+\frac{8}{2}+\frac{9}{1}\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
Tìm A:B, biết:
A=\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{1}{9}\)
B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\)
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
Tìm x, biết:
a)\(\frac{x+1}{2}=\frac{8}{x+1}\)
b)\(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
a. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)^2=2^4\)
\(\Leftrightarrow\left(x+1\right)=2^2\)
\(\Leftrightarrow\left(x+1\right)=4\)
\(\Leftrightarrow x=4-1=3\)
b. \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
\(\Leftrightarrow x:\left(\frac{10}{2}-\frac{3}{2}\right)=\frac{0,4+0,2-0,18}{1,6+0,8-0,72}\)
\(\Leftrightarrow x:\frac{7}{2}=\frac{\frac{21}{50}}{\frac{42}{25}}\)
\(\Leftrightarrow x=\frac{\frac{21}{50}}{\frac{42}{25}}.\frac{7}{2}\Leftrightarrow x=\frac{1}{4}.\frac{7}{2}=\frac{7}{8}\)
a ) \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4-1\\x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Dấu " \(\orbr{\begin{cases}\\\end{cases}}\)là hoặc nha !!!
a)\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=8\times2=16\)
\(\Rightarrow\left(x+1\right)^2=4^2\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1=3\)
b)tớ ko biết làm . ~ sorry~
~chuk bn hok giỏi~
\((\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}).x=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\frac{9}{1}\)
Ai bt làm thì giúp mk với!
Đặt \(A=\frac{1}{9}+\frac{2}{8}+...+\frac{8}{2}+\frac{9}{1}\)
\(\Rightarrow A=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\left(1+1+...+1\right)\left(9cs1\right)\)
\(\Rightarrow A=\left(\frac{1}{9}+1\right)+\left(\frac{2}{8}+1\right)+...+\left(\frac{8}{2}+1\right)+1\)
\(\Rightarrow A=\frac{10}{9}+\frac{10}{8}+...+\frac{10}{2}+\frac{10}{10}\)
\(\Rightarrow A=10.\left(\frac{1}{2}+...+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
Mà \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{10}\right).x=A\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).x=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).10\)
\(\Rightarrow x=10\)
Vậy \(x=10\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
Bài 1 : Tính
a) A = \(\frac{\frac{1}{12}-\frac{2}{9}-1}{\frac{5}{18}-\frac{-3}{4}-\frac{1}{9}}\)
Bài 2 : Tính
a) A = \(\frac{3-\frac{1}{2}+\frac{1}{4}}{\frac{2}{3}-\frac{5}{6}+\frac{-3}{4}}\) b) B = \(\frac{8-\frac{8}{5}+\frac{8}{25}-\frac{8}{125}}{9-\frac{9}{5}+\frac{9}{25}-\frac{9}{125}}\): \(\frac{161616}{151515}\)
Tính\(\frac{\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\)
Đặt S = \(\frac{\frac{9}{1}+\frac{8}{2}+...........+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{10}}\)
Đặt A là tử số, B là mẫu số
Xét A:
\(A=\frac{9}{1}+\frac{8}{2}+............+\frac{1}{9}\)
\(A=\left(9-1-1-......-1\right)+\left(\frac{8}{2}+1\right)+.........+\left(\frac{1}{9}+1\right)\)
\(A=1+\frac{10}{2}+.......+\frac{10}{9}\)
\(A=\frac{10}{1}+\frac{10}{2}+........+\frac{10}{9}\)
\(A=10\left(\frac{1}{2}+........+\frac{1}{9}\right)\)
Thay vào S ta có:
\(S=\frac{10\left(\frac{1}{2}+......+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{10}}=10\)
Vậy S = 10