Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Minh Nguyễn
Xem chi tiết
Trần Huyền Trang
Xem chi tiết
Thiện Tuấn Võ
Xem chi tiết
Vô Danh
Xem chi tiết
Nguyễn Phương Uyên
24 tháng 6 2018 lúc 21:16

\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)

\(\frac{A}{B}=10\)

kudo shinichi
24 tháng 6 2018 lúc 21:18

\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)

Tách 9=1+1+...+1 ( có 9 số 1)

\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)

\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)

\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)

\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )

Vậy \(A:B=10\)

Nguyen Tung Lam
Xem chi tiết
tth_new
9 tháng 3 2018 lúc 18:00

a. \(\frac{x+1}{2}=\frac{8}{x+1}\)

\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)

\(\Leftrightarrow\left(x+1\right)^2=16\)

\(\Leftrightarrow\left(x+1\right)^2=2^4\)

\(\Leftrightarrow\left(x+1\right)=2^2\)

\(\Leftrightarrow\left(x+1\right)=4\)

\(\Leftrightarrow x=4-1=3\)

b. \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)

\(\Leftrightarrow x:\left(\frac{10}{2}-\frac{3}{2}\right)=\frac{0,4+0,2-0,18}{1,6+0,8-0,72}\)

\(\Leftrightarrow x:\frac{7}{2}=\frac{\frac{21}{50}}{\frac{42}{25}}\)

\(\Leftrightarrow x=\frac{\frac{21}{50}}{\frac{42}{25}}.\frac{7}{2}\Leftrightarrow x=\frac{1}{4}.\frac{7}{2}=\frac{7}{8}\)

Arima Kousei
9 tháng 3 2018 lúc 17:49

a )  \(\frac{x+1}{2}=\frac{8}{x+1}\)

\(\Rightarrow\left(x+1\right).\left(x+1\right)=2.8\)

\(\Rightarrow\left(x+1\right)^2=16\)

\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=4-1\\x=-4-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Dấu " \(\orbr{\begin{cases}\\\end{cases}}\)là hoặc nha !!! 

Nguyễn Vân Anh
9 tháng 3 2018 lúc 17:50

a)\(\frac{x+1}{2}=\frac{8}{x+1}\)

\(\Rightarrow\left(x+1\right)^2=8\times2=16\)

\(\Rightarrow\left(x+1\right)^2=4^2\)

\(\Rightarrow x+1=4\)

\(\Rightarrow x=4-1=3\)

b)tớ ko biết làm . ~ sorry~

~chuk bn hok giỏi~

Lê Quỳnh Trang
Xem chi tiết
Arima Kousei
9 tháng 5 2018 lúc 23:08

Đặt \(A=\frac{1}{9}+\frac{2}{8}+...+\frac{8}{2}+\frac{9}{1}\)

\(\Rightarrow A=\frac{1}{9}+\frac{2}{8}+\frac{3}{7}+...+\frac{8}{2}+\left(1+1+...+1\right)\left(9cs1\right)\)

\(\Rightarrow A=\left(\frac{1}{9}+1\right)+\left(\frac{2}{8}+1\right)+...+\left(\frac{8}{2}+1\right)+1\)

\(\Rightarrow A=\frac{10}{9}+\frac{10}{8}+...+\frac{10}{2}+\frac{10}{10}\)

\(\Rightarrow A=10.\left(\frac{1}{2}+...+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)

Mà \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{10}\right).x=A\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).x=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right).10\)

\(\Rightarrow x=10\)

Vậy \(x=10\)

Võ Thiện Tuấn
Xem chi tiết
Earth-K-391
Xem chi tiết

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

Jenny phạm
Xem chi tiết
nguyễn hoài thu
Xem chi tiết
ST
12 tháng 7 2018 lúc 12:58

\(\frac{\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\)

Hoàng Ninh
12 tháng 7 2018 lúc 12:50

Đặt S = \(\frac{\frac{9}{1}+\frac{8}{2}+...........+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{10}}\)

Đặt A là tử số, B là mẫu số

Xét A:

\(A=\frac{9}{1}+\frac{8}{2}+............+\frac{1}{9}\)

\(A=\left(9-1-1-......-1\right)+\left(\frac{8}{2}+1\right)+.........+\left(\frac{1}{9}+1\right)\)

\(A=1+\frac{10}{2}+.......+\frac{10}{9}\)

\(A=\frac{10}{1}+\frac{10}{2}+........+\frac{10}{9}\)

\(A=10\left(\frac{1}{2}+........+\frac{1}{9}\right)\)

Thay vào S ta có:

\(S=\frac{10\left(\frac{1}{2}+......+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{10}}=10\)

Vậy S = 10