Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hữu kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 21:44

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

Phạm Long Khánh
Xem chi tiết
Nguyễn Hoàng Anh Phong
14 tháng 9 2018 lúc 15:32

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

I don
14 tháng 9 2018 lúc 15:33

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

Tăng Ngọc Đạt
Xem chi tiết
Xyz OLM
3 tháng 8 2023 lúc 17:03

Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\) 

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0) 

nguyễn hữu kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 11:55

(x+y+z)^2=x^2+y^2+z^2

=>x^2+y^2+z^2+2(xy+yz+xz)=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+yz+xz=0

1/x+1/y+1/z

=(xz+yz+xy)/xyz

=0/xyz=0

KJ kun
Xem chi tiết
Vũ Ngọc Sáng
Xem chi tiết
Nguyễn Ngọc Anh Minh
24 tháng 12 2020 lúc 8:32

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y}{2-3}=\frac{y-z}{3-4}=\frac{x-z}{2-4}\) (T/c dãy tỷ số bằng nhau)

\(\Rightarrow\frac{x-z}{-2}=-\left(x-y\right)\left(1\right)\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^3=-\left(x-y\right)^2\left(x-y\right)\left(2\right)\)

\(\Rightarrow\frac{x-z}{-2}=-\left(y-z\right)\left(3\right)\)

Từ (1) và (3) \(\Rightarrow\left(x-y\right)=\left(y-z\right)\) Thay vào (2)

\(\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^2\left(y-z\right)\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(dpcm\right)\)

Khách vãng lai đã xóa
Thuy Duong Nguyen Ngoc
Xem chi tiết
Nguyễn Thị Hoài Thương
Xem chi tiết
Khong Biet
11 tháng 12 2017 lúc 6:03

Ta có:\(x:y:z=1:2:3\Rightarrow x=\frac{y}{2}=\frac{z}{3}\).Đặt \(x=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow\hept{\begin{cases}x=k\\y=2k\\z=3k\end{cases}}\)\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)=6k.\frac{6}{k}=36\)

\(\Rightarrowđpcm\)

Hoàng Tử Lớp Học
Xem chi tiết
Thắng Nguyễn
5 tháng 11 2016 lúc 20:27

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)