why in olm math is asked the most
why in olm math is asked the most
Cho \(x\), \(y\), \(z\) là 3 số khác 0 thoả mãn \(x\) \(+\) \(y\) \(+\) \(z\) \(=0\). Chứng minh rằng:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)=\(\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
Cho x,y,z là các số thực dương thoả mãn xy+yz+zx+2xyz=1. Chứng minh rằng : x+y+z>=3/2
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
cho x,y,z>0 thoả mãn x2+y2+z2=3. Chứng minh rằng:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x, y, z là ba số dương thoả mãn \(x+y+z=3\). Chứng minh rằng: \(\frac{z^3}{z^2+x^2}+\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}\ge\frac{3}{2}\)
Cho các số thực không âm x,y,z thoả mãn \(x+y+z=3.\).
Chứng minh rằng \(\left(x-1\right)^3+\left(y-1\right)^3+\left(z-1\right)^3\ge-\frac{3}{4}\)
Cho 3 số dương x,y,z thoả mãn \(xyz-\frac{16}{x+y+z}=0\)
Chứng minh rằng \(\left(x+y\right)\left(x+z\right)\ge8\)
Cho x;y;z thoả mãn \(\hept{\begin{cases}1\le x;y;z\le3\\x+y+z=6\end{cases}}\)
Chứng minh: \(x^3+y^3+z^3\le36\)