Chứng minh rằng dãy an=10n+3 có vô số hợp số
Chứng minh rằng dãy a n = 10 n + 3 có vô số hợp số.
Chứng minh rằng dãy \(a_n=10^n+3\)có vô số hợp số
Chứng minh dãy \(a_n=10^n+3\) có vô số hợp số ( n là số tự nhiên, n>0)
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
Cho dãy số vô hạn 11; 111; 1111; 11111;.... Chứng minh rằng trong dãy số này không có số nào biểu diễn được dưới dạng tổng của hai số chính phương.
Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.
Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.
mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)
Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4
Mà các số trên đều được viết dưới dạng 11...1=10...0+11.
Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)
Chứng minh rằng \(a_n=10^n+3\)có vô số hợp số
Chứng minh rằng tập hợp các số nguyên tố có vô số phần tử
Bởi vì số tự nhiên khéo dài mãi mãi nên số nguyên tố cũng vậy
Nếu thấy đúng thì k cho mình nha
Cho dãy số thực dương (xn). Chứng minh rằng tồn tại vô số số nguyên dương n thỏa mãn \(1+x_n>\sqrt[n]{2}x_{n-1}\).
Chứng minh rằng có vô số số nguyên tố có dạng 4k +3.