cho n là stn bất kì
cmr n+3 và 2n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng : Với n ϵ N, thì các số sau là hai số nguyên tố cùng nhau
a) n+1 và 2n+3
b) n+1 và 3n+4
c) 2n+3 và 4n+8
d) n+3 và 2n+5
LÀM 1 CÂU BẤT KÌ CŨNG ĐƯỢC Ạ
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(n+3,2n+5)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
=> (2n + 6) - (2n + 5) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(n+3,2n+5) = 1
=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
Gọi d là UCLN của n + 3 và 2n + 5
=> n + 3 chia hết cho d và 2n + 5 chia hết cho d
Vì n + 3 chia hết cho d nên 2(n+3) chia hết cho d => 2n + 6 chia hết cho d
Vì 2n + 6 chia hết cho d , 2n + 5 chia hết cho d
=> 2n + 6 - (2n+5) chia hết cho d
=> 1 chia hết cho d
Mà d lớn nhất nên d = 1
Vì UCLN của n + 3 và 2n + 5 bằng 1 nên n + 3 và 2n+ 5 là 2 số nguyên tố cùng nhau
Chứng minh rằng : Với n ϵ N thì hai số sau là hai số nguyên tố cùng nhau
n+3 và 2n+5
Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n
Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N
Vậy và nguyên tố cùng nhau với mọi số tự nhiên n
Tìm số tự nhiên n để 4n+3 và 2n+3 là số nguyên tố cùng nhau.
gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d
ta có 2n + 3 chia hết cho d
=> 2( 2n + 3) chia hết cho d
=> 4n + 6 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d
=> 4n + 6 - 4n - 3 chia hết cho d
=> 3 chia hết cho d
=> d = { 1,3}
để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3
=> n = 1,... t=B tự tìm nhé
Chứng minh rằng n^3+2n và n^4+3n^2+n là 2 số nguyên tố cùng nhau.
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha
Chứng minh rằng : Với n ϵ N thì hai số sau là hai số nguyên tố cùng nhau
n+1 và 2n+3
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy n+1 và 2n+3 nguyên tố cùng nhau với mọi \(n\in N\)
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
Chứng minh rằng : Với n ϵ N thì hai số sau là hai số nguyên tố cùng nhau
2n+3 và 4n+8
Gọi \(d=ƯC\left(2n+3;4n+8\right)\) với \(d\in N\)
Do \(2n+3\) luôn lẻ \(\Rightarrow d\) lẻ
\(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Mà d lẻ \(\Rightarrow d=1\)
Vậy 2n+3 và 4n+8 nguyên tố cùng nhau với mọi \(n\in N\)