f(x)=3x^4-12x^2+ax^2-6x+3b
g(x)=x^2-4x+3
h(x)=2x^4-20x^2+18
a) Tìm x để h(x)/g(x)=48
b) Xác định a và b để f(x) chia hết cho g(x)
Cho \(f\left(x\right)=6x^4-7x^3+ax^2+3x+2\) và \(g\left(x\right)=x^2-x+b\).Xác định a,b để f(x) chia hết cho g(x)
Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:
\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)
Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:
\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)
Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
xác định hệ số a và b để f(x)=x^4+ax^2+b chia hết cho g(x)=x^2-3x+2. tìm đa thức thương
tìm a và b để đa thức f(x) chia hết cho g(x) biết: f(x)=x^4+x^3+ax^2+4x+b và g(x)=x^2-2x+2
Lời giải:
$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$
$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$
$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$
Để $f(x)\vdots g(x)$ thì:
$2(a+3)x-2(a+4)+b=0,\forall x$
$\Rightarrow a+3=-2(a+4)+b=0$
$\Rightarrow a=-3; b=2$
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
tìm a b c để F(x) chia hết cho G(x)
F(x) = x^5+x^4-9x^3+ax^2+bx+c
G(x)=x^3+3x^2-4x-12
tìm a b để đa thức f(x) chia hết cho đa thức g(x), với
a)f(x)=x^4-9x^3+21x^2+ax+b,g(x)=x^2-x-2
b)f(x)=x^4-x^3+6x^2-x+a,g(x)=x^2-x+5
c)f(x)=3x^3+10x^2-5+a,g(x)=3x+1
d)f(x)=x^3-3x+a,g(x)=(x-1)^2
Cho đa thức: f(x)= \(10x^5-8x^4+6x^3-4x^2+2x+2\)
g(x)=\(-5x^5+4x^4-3x^3+3x^2-5x+2\)
h(x)=\(-x^5+2x^4-x^3+x-7\)
a) Tính f(x)+g(x)-h(x) và f(x)-g(x)-h(x).Tìm bậc,hệ số cao nhất và hệ số tự do của đa thức kết quả.
b)Tìm x để f(x)+2g(x)=0