CMR: a/b=c/d thì (a^2+b^2)/(c^2+d^2)=ab/cd
cho tỉ lệ thức a/b=c/d .CMR: a/b=c/d cmr ab/cd=a^2-b^2/ab=c^2-d^2/cd và (a+b)^2/a^2+b^2=(c+d)^2/c^2+d^2
CMR: nếu\(\frac{a}{b}=\frac{c}{d}thì\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
cho a^2+b^2/c^2+d^2=ab/cd. CMR a/b=c/d hoặc a/b=d/c
cho a^2+b^2/c^2+d^2=ab/cd cmr a/b=c/d hoặc a/b = d/c
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\\ \Rightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\\ \Rightarrow a^2cd+b^2cd=abc^2+abd^2\\ \Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\\ \Rightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\\ \Rightarrow\left(ac-bd\right)\left(ad-bc\right)=0\\\Rightarrow \left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{matrix}\right.\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\left(đpcm\right).\)
Chúc bạn học tốt!
cho a^2+b^2/c^2+d^2 = ab/cd .CMR hoac a/b = c/d hoặc a/b = - d/c ?
Cho a,b,c,d thỏa mãn: a^2+ab+b^2 = c^2+cd+d^2. CMR: a+b+c+d là hợp số
Cho a/b=c/d .Cmr :ab/cd = (a+b)^2/(c+d)^2 .
Đặt \(\frac{a}{b}\) = \(\frac{c}{d}\) = k ⇒ \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\frac{ab}{cd}\) = \(\frac{bk.b}{dk.d}\) = \(\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) = \(\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\) = \(\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}\) = \(\frac{b^2}{d^2}\)
⇒ \(\frac{ab}{cd}\) = \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)
Cho a/b=c/d. Cmr
a, a2+b2/c2+ d2 = ab/cd
b, (a+b)2/(c+d)2 = ab/cd
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)
a) Thay (1) vào đề:
\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)
b) Thay (1) vào đề bài:
\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)
Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
a) Ta có : \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{k^2}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). CMR \(\dfrac{ab}{cd}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)