cho tỉ lệ thức a/b=c/d .CMR: a/b=c/d cmr ab/cd=a^2-b^2/ab=c^2-d^2/cd và (a+b)^2/a^2+b^2=(c+d)^2/c^2+d^2
CMR: nếu\(\frac{a}{b}=\frac{c}{d}thì\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
cho a^2+b^2/c^2+d^2 = ab/cd .CMR hoac a/b = c/d hoặc a/b = - d/c ?
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). CMR \(\dfrac{ab}{cd}\)=\(\dfrac{a^2-b^2}{c^2-d^2}\)
cho a/b=c/d CMR
a)ab/cd=(a^2+b^2)/(c^2+d^2)
Cmr nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{ab}{cd}\)
cho a/b<c/d và b;d>0. cmr: a/b<(ab+cd)/(b^2+d^2)<c/d
Cho (a2+b2)/(c2+d2) = ab/cd với a,b,c,d ≠ 0; c ≠ ±d.
CMR hoặc a/b = c/d hoặc a/b=d/c
Cmr: \(\frac{a}{b}\)=\(\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{ab}{cd}\)