Cho a là số nguyên. Chứng minh rằng |a|<5 <=> -5<a<5
Cho a=P!, trong đó P là số nguyên tố
Chứng minh rằng a+1 là số nguyên tố
Chứng minh rằng a+2, a+3, a+4, a+5,............, a+k đều là số nguyên tố
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
a) Chứng minh rằng (n+2).(n+9) chia hết cho 49
b) Cho hai số a và b nguyên tố cùng nhau. Chứng minh rằng a.b và a+b của chúng cũng nguyên tố cùng nhau
c) Chứng minh số abcabc( abcabc là một số) là bội của 77
d) Chứng tỏ số aaaaaa là bội số của 3003
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Cho p là số nguyên tố lớn hơn 3 :
a) Biết p + 2 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6
b) Biết p + 4 cũng là số nguyên tố. Chứng minh rằng p + 8 là hợp số
câu hỏi đâu có liên quan đến toán lớp 6
a) Vì p lớn hơn 3 nên p ko chia hết cho 3
=> ta có: p=3k+1 hoặc 3k+2
Xét p=3k+1=>p+2=3k+1+2=3.3(k+1) chia hết cho 3
=>p+2 là hợp số(vô lý)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3,2)=1=>p+1 chia hết cho 6
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Bài 2:
Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)
=(a+b)2+(a-b)2 là tổng 2 số chính phương
⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)
cho p là số nguyên tố lớn hơn 3
a) p + 2 cũng là số nguyên tố, chứng minh rằng p + 1 chia hết cho 6
b) chứng minh rằng p2 + 98 là là hợp số
c) chứng minh 8p2 + 1 là hợp số
Cho các số nguyên a> b> 0 và p là số nguyên tố (p> 3) sao cho p² là ước của a³ - b³. Chứng minh rằng p <a√3.