Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Chu Thị Mai Hoa
Xem chi tiết
Lãnh Hạ Thiên Băng
9 tháng 1 2017 lúc 7:28

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

Chu Thị Mai Hoa
9 tháng 1 2017 lúc 21:06

cảm ơn bạn nhiều !!

Dương Phú Trung
Xem chi tiết
masu konoichi
Xem chi tiết
Tống Lê Kim Liên
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Lê Quang Bảo
Xem chi tiết
Anh Mai
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
Nguyễn Quế Đức
Xem chi tiết
Akai Haruma
16 tháng 10 2021 lúc 18:15

Lời giải:

Đặt  $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$

$\Leftrightarrow (n-1)^2+2019=a^2$

$\Leftrightarrow 2019=(a-n+1)(a+n-1)$

Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$

$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$

Mà tích của chúng bằng $2019$ nên ta có các TH sau:

TH1: $a+n-1=2019; a-n+1=1$

$\Rightarrow n=1010$ (tm)

TH2: $a+n-1=673, a-n+1=3$

$\Rightarrow n=336$

 

 

jVũ Ất Mùi
Xem chi tiết
Võ Thạch Đức Tín 1
1 tháng 2 2016 lúc 8:51

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Zoro Roronoa
1 tháng 2 2016 lúc 8:46

Đặt n2+2006=a2 (a\(\in\)Z)
=> 2006=a- n = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2 +2006 là số chính phương