Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sillygirl657
Xem chi tiết
Akai Haruma
24 tháng 7 2021 lúc 18:09

Lời giải:
Xét số hạng tổng quát: 

\(\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})\) theo BĐT Cô-si.

Do đó:
\(x< \frac{1}{2}\left[\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right]=\frac{1}{2}(1-\frac{1}{\sqrt{100}})< \frac{1}{2}\)

Ta có đpcm.

pham thi minh ngoc
Xem chi tiết
Kalluto Zoldyck
31 tháng 3 2016 lúc 17:05

Hình như sai đề thì phải chứ mk làm ko đc !!!

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

Nguyễn Minh Quang
Xem chi tiết
Lê Thị Huyền Trang
Xem chi tiết
Xyz OLM
21 tháng 7 2019 lúc 8:58

Ta có : 1/2 = 0,5

            2/3 = 0,666...

=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100

                                           = 1,1,6666... + 3/4 + ... +99/100 > 1

=> 1/2 + 2/3 + ... + 99/100 > 1

 \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)

\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

 \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\le1\)

\(\Rightarrow1-\frac{1}{100}\le1\)

Lê Trung Hiếu
21 tháng 7 2019 lúc 9:45

1/2 + 2/3 + 3/4 + ... + 99/100 < 1

= 2/2 - 1/2 + 3/3 - 1/3 + 4/4 - 1/4 + ... + 100/100 - 1/100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100 < 1 (đpcm)

tran xuan quynh
Xem chi tiết
le thi tu phuong
Xem chi tiết
Nguyễn Thu Hoan
Xem chi tiết
Khong Biet
5 tháng 12 2017 lúc 14:02

Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..........+\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{99}}+.......+\frac{1}{\sqrt{99}}\)             (99 số \(\frac{1}{\sqrt{99}}\))

\(=\frac{99}{\sqrt{99}}=\frac{\left(\sqrt{99}\right)^2}{\sqrt{99}}=\sqrt{99}\)

\(\Rightarrowđpcm\)

anhhungzom
Xem chi tiết
Tiểu Thư Họ Nguyễn
Xem chi tiết