So sánh : A= 1.3.5.7.9...99 và B = 51/2+52/2+53/2+...+100/2
So sánh A và B :
\(A=1.3.5.7.....99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)
So sánh: A= 1*3*5*7*...*99 và B= (51/2)*(52/2)*(53/2)*...*(100/2)
so sánh
A= 1.3.5.7....99
B= 51/2 .52/2 . 53/3 .... 100/2
\(A=1.3.5.7...99=\frac{\left(1.3.5.7...99\right)\left(2.4.6...100\right)}{2.4.6...100}=\frac{1.2.3...100}{\left(2.1\right)\left(2.2\right)...\left(2.50\right)}=\frac{\left(1.2.3...50\right)\left(51.52.53....100\right)}{\left(1.2.3...50\right)\left(2.2.2...2\right)}=\frac{51.52.53...100}{2.2...2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=B\)
SO Sánh
R= 1.3.5.7...99 và S= 51/2. 52/2. 53/2... 100/2
\(R=1.3.5.7...99\)
\(R=\frac{1.2.3.4.5.6.7.8...99.100}{2.4.6.8...100}\)
\(R=\frac{1.2.3.4.5.6..8...99.100}{\left(2.2.2.2...2\right).\left(1.2.3.4...50\right)}\)
\(R=\frac{51.52.53...100}{2.2.2.2...2}\)
\(R=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}=S\)
Vậy R = S
\(G=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{99}{2}.\frac{100}{2}-1.3.5.7.9...97.99\)
tính
A= 1/51+1/52+1/53+...+1/99+1/100. so sánh với 1/2 và 1
so sánh 1.3.5.7....99 với d=51/2 .52/2 .53/2 .....100/2
So sánh 2/51 + 2/52 +2/53 +.......+ 2/98 + 2/99 + 2/100
So sánh biểu thức C và D sau:
C = 1. 3. 5. 7 ... 99 với D = 51/2 . 52/2 . 53/2 ... 100/2
helpppppppppppppppppppppppppp