Cho x+y-2=0. Tính giá trị của biểu thức x^3+x^2*y-*x^2-x*y-y^2+3*y+x-1
Tính giá trị của biểu thức sau, biết x+y=0
M=x^4-xy^3+x^3y-y^4-1=0
tính giá trị của biểu thức sau, biết x+y+1=0
D=X^2(x+y)-y^2 (x+y)+x^2-y^2+2(x+y)+3
Tính giá trị của biểu thức
A=\(x^3+x^2\cdot y-x\cdot y^2-y^3+x^2-y^2+2\cdot x+2\cdot y+3\)
Tính giá trị của A khi x+y+1=0
Ta có x+y+1=0=>xây =-1
A = x3+x2.y- x.y2-y3 + x2 - y2 +2.x+2.y +3
A = x2 .(x+y)- y2 .(x+y) + x² - y² +2.(x+y)+3
A= x².(-1)-y².(-1)+ x²-y²+ (-2)+3
A= x².0-y².0+1=1
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Tính giá trị của biểu thức sau biết x+ y+1 =0 : N= x² . x + y - y² . x + y + x² - y² + 2 . x + y + 3 .
Tính giá trị của biểu thức sau:
c) \(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\) tại \(x+y+1=0\)
\(x+y+1=0\\ \Leftrightarrow x+y=-1\)
Thay x+y=-1 vào C ta có:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)
\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)
\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)
\(\Rightarrow C=0+0+1\)
\(\Rightarrow C=1\)
\(x+y+1=0\) =>\(x+y=-1\)
- Thay \(x+y=-1\) vào C ta được:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)=1
Sao bạn doanh doanh nhắn chữ "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" quài vậy ?
Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4
= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)
= (x + y + 1)(x2 - y2) + 2(0 + 1)
= 0(x2 - y2) + 2.1
= 2
Vậy H = 2
Chúc bn học tốt!
1, Tính giá trị biểu thức sau tại x+y+1=0
D= x²(x+y) - y²(x+y) + x² - y² + 2(x+y) + 3
2, Cho xyz=2 và x+y+z=0
Tính giá trị biểu thức
M= (x+y)(y+z)(x+z)
TLMJFDLIIS HFIEHFU ưAUDSEIq
1, Tính giá trị biểu thức sau tại x+y+1=0
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)
Ta có: x + y + 1 = 0 => x + y = -1
(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)
\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)
\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)
\(=\left(y-x\right).\left(-1\right)-x+y+1\)
\(=-y+x-x+y+1\)
\(=1\)
2, Cho xyz=2 và x+y+z=0
Tính giá trị biểu thức
\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: x + y + z = 0
=> x + y = -z (1)
=> y + z = -x (2)
=> x + z = -y (3)
Từ (1);(2);(3)
=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0
1, x+y+z=1
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2+2\right)+x^2-y^2+3\)
\(=\left(x+y\right)\left(x^2-y^2+2\right)+\left(x^2-y^2+2\right)+1\)
\(=\left(x^2-y^2+2\right)\left(x+y+1\right)+1\)
=1 (vì x+y+1=0)
2, x+y+z=0 <=> \(\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)
Nhân theo vế ta được: xyz=\(-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
=> (x+y)(y+z)(z+x)=-2
B = 2x(4x + 1) − 8x^2 (x + 1) + (2x)^3 − 2x + 3.
c) C = (x − 1)^3 + (x + 1)^3 + 2x(x + 2)(x − 2).
d) D = (x + y − 5)^2 − 2(x + y − 5)(x + 3) + x^2 + 6x + 9
Câu 2. a) Cho x + y = 7 và x.y = 12. Tính giá trị của biểu thức (x − y)^2 .
b) Cho x + y = 1. Tính giá trị của biểu thức 3(x^2 + y^2 ) − 2(x^3 + y^3 ).
\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)
\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)
\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)
câu 2. ta có
a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)
b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)