Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
buidangduong
Xem chi tiết
tran dang khoa
Xem chi tiết
Nguyễn Thị Phương Loan
11 tháng 3 2019 lúc 19:57

Ta có x+y+1=0=>xây =-1

A = x3+x2.y- x.y2-y3 + x2 - y+2.x+2.y +3

A = x.(x+y)- y.(x+y) + x² - y² +2.(x+y)+3

A= x².(-1)-y².(-1)+ x²-y²+ (-2)+3

A= x².0-y².0+1=1

Real Love
Xem chi tiết
Nguyễn Hoàng Anh Thư
22 tháng 12 2021 lúc 17:13

3r3reR

Khách vãng lai đã xóa
Nguyễn nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:26

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

Thai Hung Vu
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
ILoveMath
28 tháng 1 2022 lúc 21:08

\(x+y+1=0\\ \Leftrightarrow x+y=-1\)

Thay x+y=-1 vào C ta có:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)

\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)

\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)

\(\Rightarrow C=0+0+1\)

\(\Rightarrow C=1\)

Dr.STONE
28 tháng 1 2022 lúc 21:08

\(x+y+1=0\) =>\(x+y=-1\)

- Thay \(x+y=-1\) vào C ta được:

\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=-x^2+y^2+x^2-y^2-2+3\)=1

Trần Huỳnh Gia Huy
29 tháng 1 2022 lúc 13:31

Sao bạn doanh doanh nhắn chữ "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" quài vậy ?

Nhok Bé
Xem chi tiết
Trương Huy Hoàng
10 tháng 3 2021 lúc 23:02

Ta có: H = x3 + x2y - xy2 - y3 + x2 - y2 + 2x + 2y + 4 

= x2(x + y) - y2(x + y) + (x2 - y2) + 2(x + y + 2)

= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y + 1 + 1)

= (x + y + 1)(x2 - y2) + 2(0 + 1)

= 0(x2 - y2) + 2.1

= 2

Vậy H = 2

Chúc bn học tốt!

Nhok Bé
10 tháng 3 2021 lúc 22:36

Help mik lẹ với ;-;

Lại Phương Quỳnh
Xem chi tiết
 Nguyễn Thiên Phúc
21 tháng 4 2020 lúc 19:33

TLMJFDLIIS HFIEHFU ưAUDSEIq

Khách vãng lai đã xóa
PHẠM PHƯƠNG DUYÊN
21 tháng 4 2020 lúc 19:53

1, Tính giá trị biểu thức sau tại x+y+1=0

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)

Ta có: x + y + 1 = 0 => x + y = -1

(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)

\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)

\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)

\(=\left(y-x\right).\left(-1\right)-x+y+1\)

\(=-y+x-x+y+1\)

\(=1\)

2, Cho xyz=2 và x+y+z=0

Tính giá trị biểu thức

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: x + y + z = 0

=> x + y = -z (1)

=> y + z = -x (2)

=> x + z = -y (3)

Từ (1);(2);(3) 

=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0

Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 4 2020 lúc 20:10

1, x+y+z=1

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+x^2-y^2+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+\left(x^2-y^2+2\right)+1\)

\(=\left(x^2-y^2+2\right)\left(x+y+1\right)+1\)

=1 (vì x+y+1=0)

2, x+y+z=0 <=> \(\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Nhân theo vế ta được: xyz=\(-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> (x+y)(y+z)(z+x)=-2

Khách vãng lai đã xóa
Lê Tuấn Dũng
Xem chi tiết
Nguyễn Minh Quang
26 tháng 7 2021 lúc 18:30

\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)

\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)

\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)

câu 2. ta có 

a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)

b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)

Khách vãng lai đã xóa