Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Phúc Anh
Xem chi tiết
Trịnh Ngọc Lực
Xem chi tiết
Vô Danh
13 tháng 3 2016 lúc 16:10

đơn giản thế này thôi:

Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.

Hồ Thị Hải Yến
Xem chi tiết
Trần Đức Thắng
16 tháng 8 2015 lúc 16:45

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Yuan Bing Yan _ Viên Băn...
16 tháng 8 2015 lúc 16:46

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

tth_new
17 tháng 4 2017 lúc 9:06

Khó quá!

tk mình nha

Mong bạn thông cảm

Mình mới lớp 5 thôi

Flow Come
Xem chi tiết
Nham Nguyen
Xem chi tiết
Akai Haruma
15 tháng 2 2021 lúc 23:41

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

Bùi Phương Ly
Xem chi tiết
thuy vu
27 tháng 10 2014 lúc 23:23

Gọi 5 số tự nhiên liên tiếp la n-2;n-1;n;n+1;n+2(n thuộc Z,n>= 2)

ta có (n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=5(n^2 + 2)

vì n^2 k thể tận cùng bởi 3 hoặc 8 do đó n^2 +2 k thê chia hết cho 5

suy ra 5(n^2 + 2) k la so chinh phuong

Phương Thảo
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 4 2016 lúc 22:44

Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2

Vậy tổng là:

     a2 +  (a+1)2+ (a+2)2 + (a+3)+ (a+4)2= 5a2+1+4+9+16=5a2+30 

Mikako Tomoko
19 tháng 4 2016 lúc 22:57

Gọi 5 số tự nhiên liên tiếp là  n-2;n-1;n;n+1;n+2

Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2

           =5n^2+10=5(n^2+2)

n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5

=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương

Phương Thảo
19 tháng 4 2016 lúc 22:57

ths bn nhá

Trần Thị Hảo
Xem chi tiết
_ɦყυ_
3 tháng 9 2017 lúc 21:57

Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).

Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)

Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5

=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).

Bùi Hà Quyên
Xem chi tiết
Trần Tuyết Như
29 tháng 3 2015 lúc 10:51

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

Vinh Nguyễn12345678910
31 tháng 10 2016 lúc 21:17

bạn làm đúng rồi đó à

Nguyễn Ngân Yến
7 tháng 2 2017 lúc 13:28

Tổng bình phương của 5 số tự nhiên liên tiếp có dạng là:

A=\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2\)

=\(a^2+a^2+2a+1+a^2+4a+4+a^2+6a+9+a^2+8a+16\)

=\(5a^2+20a+30\)

=\(5\left(a^2+4a+6\right)\)

=\(5\left[\left(a+2\right)^2+2\right]\)

Có ((a+2)^2 là 1 số chính phương

suy ra (a+2)^2 không có tận cùng là 3 và 8

suy ra (a+2)^2 không tận cùng bằng 0 hoặc 5

suy ra (a+2)^2+2 không chia hết cho 5

suy ra A không chia hết cho 25

Dễ thấy A chia hết cho 5 nhưng không chia hết cho 25

suy ra a không phải là số chính phương