CMR: Tổng bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương.
CMR tổng bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương
cmr : tổng bình phương của 5 số tự nhiên liên tiếp không thể là một số chính phương
đơn giản thế này thôi:
Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.
CMR: Tổng các số bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Gọi 5 số đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2
Tổng Bình phương 5 số là :
( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2
=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4
= 5a^2 + 10
= 5 ( a^ 2 + 2 ) chia hết cho 5 (1)
Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)
Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
Khó quá!
tk mình nha
Mong bạn thông cảm
Mình mới lớp 5 thôi
Cmr tổng của bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
ai giải được mình tick
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
C/m tổng các bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương
Gọi 5 số tự nhiên liên tiếp la n-2;n-1;n;n+1;n+2(n thuộc Z,n>= 2)
ta có (n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=5(n^2 + 2)
vì n^2 k thể tận cùng bởi 3 hoặc 8 do đó n^2 +2 k thê chia hết cho 5
suy ra 5(n^2 + 2) k la so chinh phuong
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương.
Gọi 5 số bình phương các số liên tiếp là : a2 ; (a+1)2;(a+2)2;(a+3)2;(a+4)2
Vậy tổng là:
a2 + (a+1)2+ (a+2)2 + (a+3)2 + (a+4)2= 5a2+1+4+9+16=5a2+30
Gọi 5 số tự nhiên liên tiếp là n-2;n-1;n;n+1;n+2
Ta có A=(n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2
=5n^2+10=5(n^2+2)
n^2 không tận cùng là 3;8 =>n^2+2 không tận cùng là 0 hoặc 5 =>n^2+2 không chia hết cho 5
=>5(n^2+2) không chia hết cho 25 => A không phải là số chính phương
Chứng minh tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Chứng minh tổng bình phương của 5 số tự nhiên liên tiếp không thể là một số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
Tổng bình phương của 5 số tự nhiên liên tiếp có dạng là:
A=\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2\)
=\(a^2+a^2+2a+1+a^2+4a+4+a^2+6a+9+a^2+8a+16\)
=\(5a^2+20a+30\)
=\(5\left(a^2+4a+6\right)\)
=\(5\left[\left(a+2\right)^2+2\right]\)
Có ((a+2)^2 là 1 số chính phương
suy ra (a+2)^2 không có tận cùng là 3 và 8
suy ra (a+2)^2 không tận cùng bằng 0 hoặc 5
suy ra (a+2)^2+2 không chia hết cho 5
suy ra A không chia hết cho 25
Dễ thấy A chia hết cho 5 nhưng không chia hết cho 25
suy ra a không phải là số chính phương