Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đồng Phương Thanh
Xem chi tiết
ĐỐ ĐỨC HOÀN
Xem chi tiết
Lê Thu Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 13:21

a: Xet ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD
=>ΔABD=ΔAED

=>AB=AE
=>ΔABE cân tại A

b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE
góc BDF=góc EDC

=>ΔBDF=ΔEDC

=>DF=DC

Xet ΔADF và ΔADC có

AD chung

DF=DC

AF=AC

=>ΔADF=ΔADC

 

doraemon
Xem chi tiết
Lê Thị Nhung
11 tháng 3 2020 lúc 16:07

A E F B C G D

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

Khách vãng lai đã xóa
doraemon
Xem chi tiết
Lê Thị Nhung
11 tháng 3 2020 lúc 16:03

A B D E F C G

Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)

Xét tam giác AED và tam giác AFD

có góc AED=góc AFD = 900

góc BAD = góc CAD (GT)

AD chung

suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)

suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)

Mà AB=AC suy ra A thuộc đường TT của EF (2)

từ (1) và (2) suy ra AD là đường trung trực của EF

b) Xét tam giác  ABD và tam giácACD

có AD chung

góc BAD = góc CAD (GT)

AB=AC (GT)

suy ra tam giác  ABD = tam giác ACD (c.g.c)

suy ra BD = DC (hai cạnh tương ứng)

Xét tam giác EDB và tam giác GDC

có BD=DC (CMT)

góc EDB = góc CDG (đối đỉnh)

ED = DG (GT)

suy ra tam giác EDB =  tam giác GDC (c.g.c)

suy ra góc DEB = góc CGD

mà góc DEB = 900

suy ra góc CGD = 900

suy ra tam giác EGC vuông tại G

Khách vãng lai đã xóa
Ngochan Nguyen
Xem chi tiết
Nguyễn Tất Đạt
16 tháng 6 2018 lúc 9:02

A B C D E F M a b

a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF

Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300

Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600

Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.

b) Dễ thấy ^CAM=1800-^BAC=600.

CM // AD => ^ACM=^DAC=1/2^BAC=600

Từ đó suy ra \(\Delta\)ACM là tam giác đều.

c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF

=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD

=> a - b = 1/2AD => AD= 2(a - b).

Vậy .........

Cậu Bé Ngu Ngơ
Xem chi tiết
Trịnh Quỳnh Nhi
27 tháng 11 2017 lúc 21:16

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều

Trịnh Dung
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 8:19

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC