Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh La The
Xem chi tiết
Nguyễn Lưu Hương
Xem chi tiết
Nguyễn Lưu Hương
2 tháng 8 2017 lúc 9:40

lam giong nhu khuyen hoang nhung me bao lo

(a+2)2 = 0,2

(b-3)4= 2

(5-c)6=0

Trần minh hieu
Xem chi tiết
Vầng Trăng Khuyết
Xem chi tiết
Trần Thục Uyên
18 tháng 3 2017 lúc 20:40

ủa hình như còn thiếu "bằng 0" thì phải

a=(-2)

b=3

c=3

a+b+c=-2+3+5=6

trần thị thùy dương
18 tháng 3 2017 lúc 21:00

bằng 6 nhé

Nhật Nguyệt Lệ Dương
Xem chi tiết
An Nguyễn Bá
Xem chi tiết
Bùi Mạnh Dũng
Xem chi tiết
Đặng Minh Triều
19 tháng 6 2017 lúc 13:35

a3+b3+c3=3abc

<=>(a+b)3-3ab(a+b)-3abc+c3=0

<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0

<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0

<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0

<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0

<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]

=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac

Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)

Trang Lê
Xem chi tiết
Nguyến Đức Quang
30 tháng 4 2021 lúc 16:10

câu trả lời là c nha

Khách vãng lai đã xóa
Trang Lê
30 tháng 4 2021 lúc 21:26

vậy bạn cho mình biết cách làm đi 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 5 2021 lúc 22:35

Dễ thấy VT ≥ 0 ∀ x,y mà đề bài cho VT ≤ 0 

=> VT = 0 <=> \(\hept{\begin{cases}3x+9=0\\2-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)

=> xy = -6 => C)

Khách vãng lai đã xóa
Nguyễn Hoàng Phúc
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 17:56

Đặt vế trái là P

\(P=\dfrac{1.c+ab}{a+b}+\dfrac{1.a+bc}{b+c}+\dfrac{1.b+ac}{a+c}=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)

\(P=\dfrac{ac+c^2+bc+ab}{a+b}+\dfrac{a^2+ac+ab+bc}{b+c}+\dfrac{ab+ac+b^2+bc}{a+c}\)

\(P=\dfrac{c\left(a+c\right)+b\left(a+c\right)}{a+b}+\dfrac{a\left(a+c\right)+b\left(a+c\right)}{b+c}+\dfrac{a\left(b+c\right)+b\left(b+c\right)}{a+c}\)

\(P=\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Áp dụng BĐT Cô-si:

\(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\ge2\sqrt{\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)}}=2\left(a+c\right)\) (1)

 Tương tự: \(\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(b+c\right)\) (2)

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\) (3)

Cộng vế với vế (1);(2);(3):

\(2.\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+2.\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+2.\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+b\right)+2\left(b+c\right)+2\left(c+a\right)\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+c}\ge2\left(a+b+c\right)=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)