Trong tổ 1 có 11 học sinh, có bao nhiêu cách chọn ra 5 học sinh rồi xếp thành một hàng dọc?
Một tổ có 4 học sinh nam và 5 học sinh nữ
a) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành một hàng dọc?
A. 4!*5!
B. 4!+5!
C. 9!
D. A 9 4 . A 9 5
- Mỗi cách xếp có 4+5=9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! Cách xếp. Chọn đáp án là C
Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!*5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong p học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)
Một tổ có 4 học sinh nam và 5 học sinh nữ
b) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành hàng dọc sao cho học sinh nam và nữ đứng xen kẽ nhau?
A. 4!*5!
B. 4!+5!
C. 9!
D. A 9 4 . A 9 5
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
Một tổ có 8 học sinh, trong đó có 4 học sinh nam và 4 học sinh nữ. Hỏi có bao nhiêu cách xếp các học sinh trong tổ thành một hàng dọc sao cho nam, nữ đứng xen kẽ nhau?
A. 3698
B. 4002
C. 242
D. 2.242
Ta xét hai trường hợp:
TH1. Bạn nam đứng đầu hàng
Xếp 4 bạn nam vào 4 vị trí 1;3;5;7 có 4!=24 cách xếp 4 bạn nam
Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.
Khi đó số cách sắp xếp là cách.
TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.
Vậy có 2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.
Chọn D.
Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
A. 5!.5!
B. 2.(5!)2
C. 10!
D. 2.5!
Theo bài ra, ta thấy cách sắp xếp chính là việc nam nữ đứng xen kẽ nhau.
Như vậy sẽ có hai trường hợp, hoặc là bạn nam đứng đầu hàng hoặc là bạn nữ đứng đầu hàng.
Và 5 bạn nam thay đổi vị trí cho nhau tương ứng với 5! cách.
Tương tự với 5 bạn nữ thay đổi vị trí tương ứng với 5! cách.
Vậy số cách sắp xếp cần tìm 2.(5!)2.
Chọn B.
Một tổ có 5 học sinh trong đó có bạn An. Có bao cách sắp xếp 5 bạn đó thành một hàng dọc sao cho bạn An luôn đứng đầu?
A. 120 cách xếp
B. 5 cách xếp
C. 24 cách xếp
D. 25 cách xếp
Đáp án C
Chọn An là người đứng đầu, 4 bạn còn lại xếp vào 4 vị trí còn lại nên có 4 ! = 24 cách
Một tổ có 5 học sinh trong đó có bạn An. Có bao cách sắp xếp 5 bạn đó thành một hàng dọc sao cho bạn An luôn đứng đầu?
A. 120 cách xếp
B. 5 cách xếp
C. 24 cách xếp
D. 25 cách xếp
Đáp án C
Chọn An là người đứng đầu
4 bạn còn lại xếp vào 4 vị trí còn lại nên có 4!=24 cách
a) Có bao nhiêu cách xếp 20 học sinh theo một hàng dọc?
A.\({20^{20}}\) B.\(20!\) C. 20 D.1
b) Số cách chọn ra 3 học sinh từ một lớp có 40 học sinh là:
A. \(A_{40}^3\) B. \({40^3}\) C. \({3^{40}}\) D.\(C_{40}^3\)
a) Số cách xếp 20 học sinh theo một hàng dọc là: \(20!\) (cách xếp). Vậy ta chọn đáp án B.
b) Số cách chọn ra 3 học sinh từ một lớp có 40 học sinh là: \(C_{40}^3\) (cách chọn). Vậy ta chọn đáp án D.
Bài 1. Có 5 bạn học sinh
A B C D E trong đó có 2 nữ và 3 nam. Hỏi có bao nhiêu cách:
a,sắp xếp 5 học sinh trên thành 1 hàng dọc trong đó học sinh Akhông đứng cạnh học sinhB?
b, sắp xếp 5 học sinh trên thành 1 hàng dọc trong đó 2 học sinh nữ đứng phía trước?
c, sắp xếp 5 học sinh trên thành 1 hàng dọc trong đó học sinhA đứng giữa 2 học sinh nữ?
xếp 3 học sinh sinh lớp 2 học sinh lớp 10 12 học sinh lớp 12 thành một hàng dọc Hỏi có bao nhiêu cách xếp sao cho 2 học sinh lớp 11 đứng cạnh nhau và không có hai học sinh lớp 10 nào đứng cạnh nhau