1.Cho A = 5 + 52 +53 +...+ 52019. Chứng tỏ rằng 4A+5 là số chính pương. Chứng tỏ rằng mọi số tự nhiên n thì 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau
2.Cho phân số P = 2019/x-2020 . Tìm số nguyên x để P có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Hãy chia số 36 thành 3 số a,b,c sao cho a/b =3/4 và b/c = 4/3
Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)
\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương
( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)
Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)
Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)
Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)
Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)
Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)
( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)
\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn
Bạn giải ngĩa hết các từ viết tắt giùm mik với
Cho A=3^0 +3^1 + 3^2 +3^3+.....+ 3^2008 và B = 3^2009
Chứng tỏ rằng 2A và B là 2 số liên tiếp
Ta có: A = 30 + 31 + 32 + 33 +...+ 32008
Nhân hai vế cho 3, ta có:
3A = 31 + 32 + 33 + 34+...+ 32009
Trừ 3A cho A, ta được:
3A - A= ( 31 + 32 + 33 +34+...+ 32009) - ( 30 + 31 +32 + 33 +....+ 32008)
2A = 31 + 32 + 33 + 34 +... + 32009 - 30 - 31 - 32 - 33 -...- 32008
2A = 1 + 32009
Mà B = 32009
Vậy 2A và B là hai số tự nhiên liên tiếp ( hơn kém nhau 1 đơn vị)
Cho A= 3^0+3^1+3^2+...+3^2018 và B = 3 chứng tỏ 2A và B là 2 số nguyên liên tiếp.
Mn giúp mik nha!\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
1.Tìm x, biết
(1-2+3-4+... - 96 + 97 - 98 + 99).x = 2000
2. Chứng minh các số sau nguyên tố cùng nhau :
a) n và n+1
b) 2n và 2n + 3
c) n+1 và 2n + 3
3. Cho tổng sau :
S = 1+2+3+ ... + 2019 + 2020
Chứng tỏ : S \(⋮\) 5
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
b, 2n và 2n + 3 là hai số nguyên tố cùng nhau
Gọi ƯCLN( 2n; 2n + 3) = d
⇒ 2n ⋮ d; 2n + 3 ⋮ d
⇒ 2n + 3 - 2n ⋮ d
3 ⋮ d
d = 1; 3
2n và 2n + 3 không thể là hai số cùng nhau
Cho a,b,c là 3 số nguyên dương đôi 1 nguyên tố cùng nhau.CMR(ab+bc+ac) và abc là 2 số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
a. Tìm tất cả các số tự nhiên n để: 3n + 9.n + 36 là số nguyên tố.
b. Tìm chữ số tận cùng của M= 41 + 42 + 43 + 44 + .........+ 42012 + 42013
c. Chứng tỏ rằng 102015 + 17 chia hết cho 9.
d. Cho hai số a; b nguyên tố cùng nhau. Chứng tỏ rằng: a+ b và a.b của chúng cũng là hai số nguyên tố cùng nhau.
e. Cho S=1 + 3 + 32 + 33 + ... + 399. Chứng tỏ 2S là lũy thừa của 3.
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
Bài 3: Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau: a) 2 +n và 3 +n b) 2n+3 và 3n+5
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
a) Gọi d = ƯCLN(2 + n; 3 + n)
--> (3 + n) - (2 + n) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2 + n và 3 + n nguyên tố cùng nhau