Bài 5 : Chứng minh rằng : 1/a - 1/1+n = n/a(a+n)
Bài 1
a, A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\) ( \(n\in N\) )
b, Chứng minh rằng A<1
Giups mìk vs ạ
a) A = 1/(1.2) + 1/(2.3) + ... + 1/[n(n + 1)]
= 1 - 1/2 + 1/2 - 1/3 + 1/n - 1/(n + 1)
= 1 - 1/(n + 1)
b) Do n ∈ ℕ
⇒ n + 1 > 0
⇒ 1/(n + 1) > 0
⇒ 1 - 1/(n + 1) < 1
Vậy A < 1
Bài 1 : chứng minh rằng a,b€N tổng 12a+36b là bội của 3
Bài 2: Tìm n€N sao cho 2n+7 chia hết cho n+1
\(=3.\left(4a+12b\right)\)chia hết cho 3 vì có thừa số là 3.
b)\(2n+7=2n+2+5\)
\(=2.\left(n+1\right)+5\)
=>5 chia hết cho n+1.
n+1 thuộc 1;5
n thuộc 0;4.
Chúc em học tốt^^
Bài 1:
12a + 36b = 12.(a + 3b) = 3.4.(a + 3b) chia hết cho 3
=> 12a + 36b luôn chia hết cho 3 (Đpcm)
Bài 2:
2n + 7 chia hết cho n + 1
=> 2n + 2 + 5 chia hết cho n + 1
=> 2(n + 1) + 5 chia hết cho n + 1
Có 2(n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1; -1; 5; -5}
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Mà n thuộc N
=> n thuộc {0; 4}
Bài 1 : Chứng tỏ rằng
a) 94260 - 35137 chia hết cho 5
b) 995 - 984 + 973 - 962 chia hết cho2 và 5
Bài 2 : Cho n thuộc N . Chưng tỏ rằng 5n - 1 chia hết cho 4
Bài 3 : Cho n thuộc N . Chứng tỏ rằng n2 + n + 1 không chia hết cho cả 2 và 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
bài 1: a) chứng minh rằng: với mọi nen thì ( n+5 ) . ( n+8 ) : 2
b) chứng minh rằng: Với mọi nen thì n . ( n+4 ) . ( n+8 ) chia hết cho 3
bài 2: tìm xeN
a) { x2- [ 62 - ( 82-9.72 )3 -7.5 ]3 - 5 .3 {3 =1
b) 5x-2-32 = 24
a ) ( n + 5 ) . ( n + 8 ) = n . n + n . 8 + 5 . n + 5 . 8 = n^2 + 8n + 5n + 40
Nếu n là số lẻ thì n^2 cũng là số lẻ ; 5n cũng là số lẻ . Còn lại đều là số chẵn
Vậy n^2 + 5n sẽ thành số chẵn .
Chẵn + chẵn + chẵn = chẵn .
Mà số chẵn thì chi hết cho 2 .
Nếu n là số chẵn thì n^2 cũng là số chẵn ; 5n cũng là số chẵn . Vậy tổng trên tất cả đều là số chẵn
=> tổng chẵn và chia hết cho 2 .
b ) n . ( n + 4 ) . ( n + 8 ) = ( n . n + n . 4 ) . ( n . n + n . 8 ) = ( n^2 + 4n ) . ( n^2 + 8n ) = n^2 ( 8n + 4n ) = n^2 . 12n
Vì trong tích trên có 12 = 3 . 4 nên tích trên chia hết cho 3 kéo theo n . ( n + 4 ) . ( n + 8 ) chia hết cho 3 .
Bài 2 :
a ) { x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5 . 3 }^3 = 1
=> x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 9.49 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 441 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( -47897473 ) - 7.5 ]^3 - 5.3 = 1
x^2 - [ 47897509 - 7.5 ]^3 - 5.3 = 1
Phần lũy thừa này máy mình không tính được .
b ) 5^x-2 - 3^2 = 2^4
5^x-2 - 9 = 16
5^x-2 = 16 + 9
5^x-2 = 25
5^x-2 = 5^2
=> x - 2 = 2
x = 2 + 2
x = 4
Bài 2:a)
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
Bài 1: Chứng minh rằng nếu a thuộc Z thì
a) M = a.( a+2 ) - a ( a-5 ) -7 là bội của 7
b) N= ( a-2 )( a+3 ) - ( a-3 )( a+2 ) là số chẵn
a, M = a.(a + 2) - a(a-5) - 7
= a(a + 2 - a + 5) - 7
= a.7 - 7
= 7(a - 1) là bội của 7.
b, + Nếu a là số chẵn => a - 2 và a + 2 là số chẵn
=> (a - 2)(a + 3) và (a - 3)(a + 2) là số chẵn
=> (a - 2)(a + 3) - (a - 3)(a + 2) là số chẵn (1)
+ Nếu a là số lẻ => a + 3 và a - 3 là số chẵn
=> (a - 2)(a + 3) và (a - 3)(a + 2) là số chẵn
=> (a - 2)(a + 3) - (a - 3)(a + 2)là số chẵn (2)
Từ (1) và (2) => (a - 2)(a + 3) - (a - 3)(a + 2) luôn chẵn
bài 1: tìm các hệ số a và b của đa thức f(x)=a+b biết rằng f(1)=1,f(2)=4
bài 2:cho đa thức f(x)=ax^2+bx+c bằng 0 với mọi giá trị của x. chứng minh rằng a=b=c=0
bài 3: cho đa thức P(x)=ax^2+bx+c trong đó các hệ số a,b,c là các số nguyên. biết rằng giá trị của đa thức chia hết cho 3 với mọi giá trị nguyên của x. chứng minh rằng a,b,c đều chia hết cho 3
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
Bài 1 : Chứng minh rằng : tổng ba số tự nhiên liên tiếp \(⋮3\).
Bài 2 : Chứng minh rằng : với \(\forall n\in N\)thì \(60n+45:15⋮̸30\).
Gọi ba số tự nhiên liên tiếp lần lượt là n;n+1;n+2
Nếu n chia hết cho 3 thì bài toán luôn đúng.
Nếu n chia 3 dư 1 thì n = 3k + 1 (k thuộc N) => n + 2 = 3k + 1 + 2 = 3k+3 chia hết cho 3
Nếu n chia 3 dư 2 thì n = 3k+2 => n+1 = 3k + 2 + 1 = 3k+3 chia hết cho 3
Vậy tổng ba số tự nhiên liên tiếp luôn luôn chia hết cho 3
Chứng minh rằng A = 1 + 3 + 5 + 7 ......... + n là số chính phương ( n lẻ )