Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kỳ Anh
Xem chi tiết
Akai Haruma
20 tháng 7 lúc 23:00

Lời giải:

$A=1+5+5^2+5^3+...+5^{98}+5^{99}$

$=1+(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^{97}+5^{98}+5^{99})$

$=1+5(1+5+5^2)+5^4(1+5+5^2)+...+5^{97}(1+5+5^2)$

$=1+(1+5+5^2)(5+5^4+...+5^{97})$

$=1+31(5+5^4+....+5^{97})$

$\Rightarrow A$ chia $31$ dư $1$

Nguyễn Trọng Ninh
Xem chi tiết
Thy Ngọc Nguyễn
14 tháng 5 2020 lúc 20:29

\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}⋮11\)

\(A=\frac{11}{22}+\frac{11}{33}+...+\frac{11}{99}⋮11\)

\(A=11.\left(\frac{1}{22}+\frac{1}{33}+...+\frac{1}{99}\right)⋮11\)

\(\Rightarrow A⋮11\)(vì tổng A có thể tách thành một tích nhân với 11)

(mình làm sai nhớ đừng ném đá mình)

Khách vãng lai đã xóa
Thy Ngọc Nguyễn
14 tháng 5 2020 lúc 20:31

chỗ tổng A có thể tách ... bạn nhớ sửa là tổng A có thể tách thành một tích có thừa số 11 nhé bạn

Khách vãng lai đã xóa
Banana Guy
Xem chi tiết
nguyễn tuấn thảo
2 tháng 9 2019 lúc 14:07

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)

\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)

shitbo
2 tháng 9 2019 lúc 16:21

\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)

\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)

\(5^8-5^7-1\equiv5\left(mod7\right):v\)

Nguyễn Tuấn Thảo
3 tháng 9 2019 lúc 14:59

\(6+6^2+\cdot\cdot\cdot+6^{10}\)

\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)

\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)

\(⋮7\)

Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Nam
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Thùy Dương
8 tháng 10 2017 lúc 6:50

Bài 1:

a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)

Để \(n+8⋮n\) thì \(8⋮n\)

\(\Rightarrow n\in\left\{1;2;4;8\right\}\)

Vậy.....

b.c tương tự

Bài 2:

a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)

Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)

b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)

Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)

nguyễn thị bích ngọc
Xem chi tiết
nguyen thi thuy trang
11 tháng 10 2015 lúc 19:22

tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé

Nguyễn Phương Thảo
14 tháng 10 2015 lúc 17:57

Ai hởHoàng Quốc Việt

phan van co 4
Xem chi tiết
Hoàng Nguyễn Xuân Dương
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

jimmydozen
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Nguyen Quynh Tram
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

truong thi thuy linh
Xem chi tiết
Lê Trần Linh Đan
20 tháng 7 2017 lúc 14:24

a)Ta có 

2^20-2^17 = 2^17 . 2^3 - 2^17 .1

               = 2^17 .( 2^3 - 1)

               = 2^17 . 7 chia hết cho 7

b)Ta có 

10^6 + 5^7 =2^6 . 5^6 + 5^6 . 5

                = 5^6. (2^6+ 5)

                = 5^6 . 69

                  ......

tới đây mink hết biết r bn tự giải tiếp đi nha!

Arisugawa Otome
Xem chi tiết
❤  Hoa ❤
12 tháng 12 2018 lúc 14:26

A = 1 + 5 + 52 + 53 + ... + 597 + 598 + 599

A = ( 1 + 5 + 52 ) + ( 53 + 54 + 55) + ... + ( 597 + 598 + 599 ) 

A = ( 1 + 5 + 52 )  + 53 ( 1 + 5 + 52 ) + ... + 597( 1 + 5 + 52 ) 

A = 31 ( 1 + 53 + ... + 597 ) 

=> A chia hết cho 31

Đào Gia Hân HSG toan
17 tháng 1 2019 lúc 10:25

ban oi mk thay A ko chia het cho 31 vi gop 3 so moi chia het ma co 100 so thi gop 3 so se du 1 so 5^99

neu 5^99 chia het cho 31 thi A moi chia het cho 31 

neu sai mong cac ban thong cam nha