Phân tích đa thức thành nhân tử:
\(x\left(x+2\right)\left(x^2+2x+2\right)+1\)
Phân tích đa thức thành nhân tử: \(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
\(=2.\left[x^4+x^2+1+2x^3+2x+2x^2\right]-\left(4x^2+4x+1\right)-\left(x^4+4x^3+4x^2\right)\)
\(=x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
Chúc bạn học tốt.
phân tích đa thức thành nhân tử :
a, \( \left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
\(\left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
\(=\left(x-5\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2-4\left(x-3\right)^2\)
\(=\left(x-5+2x-1\right)^2-\left(2x-6\right)^2\)
\(=\left(3x-6\right)^2-\left(2x-6\right)^2\)
\(=\left[\left(3x-6\right)-\left(2x-6\right)\right].\left[\left(3x-6\right)+\left(2x-6\right)\right]\)
\(=\left(3x-6-2x+6\right)\left(3x-6+2x-6\right)\)
\(=\left(5x-12\right)x\)
phân tích đa thức thành nhân tử
\(x\left(x+2\right)\left(x^2+2x+2\right)+1\)
Phân tích đa thức thành nhân tử
\(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
(x^2 - 2x)(x^2 - 2x - 1) - 6
đặt x^2 - 2x = a
= a(a - 1) - 6
= a^2 - a - 6
= a^2 - 3a + 2a - 6
= a(a - 3) + 2(a - 3)
= (a + 2)(a - 3)
= (x^2 - 2x + 2)(x^2 - 2x - 3)
= (x - 3)(x + 1)(x^2 - 2x + 2)
Phân tích đa thức thành nhân tử
\(A=\left(2x^2-x+1\right)\left(2x^2-x-5\right)+8\)
Đặt \(2x^2-x-2=t\)
Ta có:
\(A=\left(t+3\right)\left(t-3\right)+8\)
\(A=t^2-9+8\)
\(A=\left(t-1\right)\left(t+1\right)\)
Thay vào ta được:
\(A=\left(2x^2-x-3\right)\left(2x^2-x-1\right)\)
Phân tích đa thức thành nhân tử:
a) \(x^2\left(1-x^2\right)-4-4x^2\)
b) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
phân tích đa thức thành nhân tử :
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)
(x2+1)2+3x(x2+1)+2x2
= [(x2+1)2+2x(x2+1)+x2]+[x(x2+1)+x2]
=(x2+x+1)2+x.(x2+x+1)
=(x2+x+1)(x2+2x+1)
=(x2+x+1)(x+1)2
phân tích đa thức thành nhân tử
a.\(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
b.\(x^2+y^2-x^2y^2+xy-x-y\)