Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
maivananh
Xem chi tiết
phạm văn quyết tâm
Xem chi tiết
bùi nhật ninh
28 tháng 3 2018 lúc 20:40

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

Vũ Mai Như Quỳnh
Xem chi tiết
Nguyễn Quốc Phương
5 tháng 3 2016 lúc 21:49

A<B

100% K MHE

Nguyễn Minh Hiệu
Xem chi tiết
Đặng Hoàng Nghiêm
28 tháng 10 2015 lúc 16:44

là 142015  =10452016

Lại Thuỳ Dương
Xem chi tiết
Phùng Minh Quân
16 tháng 3 2018 lúc 19:52

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2016}+1}{10^{2015}+1}>\frac{10^{2016}+1+9}{10^{2015}+1+9}=\frac{10^{2016}+10}{10^{2015}+10}=\frac{10\left(10^{2015}+1\right)}{10\left(10^{2014}+1\right)}=\frac{10^{2015}+1}{10^{2014}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Trần Dương Quang Hiếu
Xem chi tiết
Trần Thành Minh
5 tháng 8 2015 lúc 19:42

xét A ta có 

\(10A=\frac{10.\left(10^{2014}+1\right)}{10^{2015}+1}=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}\)suy ra \(10A=1+\frac{9}{10^{2015}+1}\)

xét B ta có 

\(10B=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}=\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

Vì 10A>10B suy ra A >B

 

Hoàng Phú Huy
30 tháng 3 2018 lúc 20:53

10A = 10 2015 + 1 10. 10 2014 + 1

= 10 2015 + 1 10 2015 + 10

= 10 2015 + 1 10 2015 + 1 + 9

suy ra 10A = 1 + 10 2015 + 1 9 

Huỳnh Quang Sang
30 tháng 3 2018 lúc 20:54

10A=10.(102014+1102015+1 )=102015+10102015+1 =102015+1+9102015+1 =1+9102015+1 

10B=10.(102015+1102016+1 )=102016+10102016+1 =102016+1+9102016+1 =1+9102016+1 

Vì 1 = 1; 9 = 9 ta so sánh mẫu:

Ta có: 102015 < 102016 => 102015+1 < 102016+1

=> 1+9102015+1 >1+9102016+1 

=> 10A > 10B

=> A > B.

 Đúng 20  Sai 0 Lê Thị Như Quỳnh đã chọn câu trả lời này.

Mai Anh Pen Tapper
Xem chi tiết
Nguyễn Thị Hiền Lương
3 tháng 8 2016 lúc 10:10

b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\) 

                 = \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)

                 = \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)

                 = \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)

                 = 1 + \(\frac{1999}{2000^{2016}+1}\)

    2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)

                 = \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)

                 = \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)

                 = 1 + \(\frac{1999}{2000^{2015}+1}\)

So sanh 

Nguyễn Thị Hiền Lương
3 tháng 8 2016 lúc 10:15

câu b tiếp 

So sánh 2000A với 2000B  

Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)

→ 2000A< 2000B

→ A<B

 

Nguyễn Ngọc Linh
Xem chi tiết
bvdfhgjk
Xem chi tiết