CMR nếu x+y+z chia hết cho 5 thì x^5+y^5+z^5 chia hết cho 5
1./ CMR : (x-y)5+(y-z)5+(z-x)5 chia hết cho 5(x-y)(y-z)(z-x)
2./ CMR : 22225555+55552222 chia hết cho 7
1:
với a, b, c nguyên thỏa a + b + c = 0
ta có:
a^5 + b^5 + c^5 = (a³+b³)(a²+b²) - a³b² - a²b³ - (a+b)^5 << thay c = -(a+b) >>
= (a+b)(a²-ab+b²)(a²+b²) - a²b²(a+b) - (a+b)^5
= (a+b)[a^4 + b^4 + 2a²b² - a³b - ab³ - a²b² - (a²+b²+2ab)²]
= (a+b)(-5a²b² - 5a³b - 5ab³)
= -5ab(a+b)(ab+a²+b²)
= 5abc(a²+b²+ab)
Vậy a^5 + b^5 + c^5 chia hết cho 5abc
- - -
trở lại bài toán đặt a = x-y ; b = y-z ; c = z-x có ngay a+b+c = 0
do đó ad đẳn thức ở trên ta có:
(x-y)^5 + (y-z)^5 + (z-x)^5 chia hết cho 5(x-y)(x-z)(z-x)
2:
cách 1
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn)
(a-b)^n = a^n+...............+-b^b(n lẻ)
(2222^5555) + (5555^2222)
=(7.317 +3)^5555 + (7.793+4)^2222
=7K+3^5555 +7P+4^2222
=7K+7P +(3^5)^1111 + (4^2)^1111
=7P+7k +(259)U chia hết cho 7
bạn có thể tham khảo 2 cách
Tìm x: (1/2x-1004)^2008 = (1/2x-1004)^2006 help me
Sakura Kinomoto ak
coi (1/2x-1004)là y đi thì
=>y^2008=y^2006
=>y = 1 hoặc (-1)
nếu y=1 thì
1/2x-1004=1
1/2x=1+1004=1005
x=1005:1/2=2010
vậy ta tìm dc x = 2010
nếu x = -1 thì
1/2x-1004=(-1)
1/2x=(-1)+1004=1003
x=1003:1/2=2006
vậy ta tìm dc x là 2006
vậy x=2010 hoặc 2006
nhé Sakura Kinomoto
cho x,y,z,t,k là các số nguyên thỏa x+y+z+t+k chia hết cho 5
cmr \(x^5+y^5+z^5+t^5+k^5\)chia hết cho 5
tui chịu mấy má
a,Cho 5 số nguyên .CMR: Tồn tại một số chia hết cho 5 hoặc một vài số có tổng chia hết cho 5.
b,Cho x,y,z >0 thỏa mãn xyz=1.Tìm min :
M=1/(x^3 (y+z))+1/(y^3 (z+x))+1/(z^3 (x+y))
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Cho x,y thuộc Z, chứng tỏ nếu 2x + 4y chia hết cho 5 thì 4x + 3y chia hết cho 5
2x+4y chia hết cho 5
=>4x+8y chia hết cho 5(nhân 2)
=>4x+3y+5y chia hết cho 5
5y chia hết cho 5 nen .... 4x+3y chia jhet cho 5
CMR : A = (2x + 3y).(3x+2y) chia hết cho 5 thì A chia hết cho 25
cho x,y thuộc z
Vì A chia hết cho 5
=> 2x + 3y chia hết cho 5 hoặc 3x + 2y chia hết cho 5
TH1: Với 2x + 3y chia hết cho 5
=> 2x + 3y + 10x + 5y chia hết cho 5(10x ; 5y chia hết cho 5)
=> 12x + 8y chia hết cho 5
4(3x + 2y) chia hết cho 5
Mà UCLN(4;5) = 1
Do đó 3x + 2y chia hết cho 5
Vì 3x + 2y và 2x + 3y đều chia hết cho 5
=> A chia hết cho 52 = 25
TH2: 3x + 2y chia hết cho 5
3x + 2y +5x + 10y chia hết cho 5 (5x ; 10y chia hết cho 5)
8x + 12y chia hết cho 5
4(2x + 3y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 2x + 3y chia hết cho 5
Vì 2x + 3y và 3x+ 2y đều chia hết cho 5
=> A chia hết cho 52 = 25
Từ TH1 và TH2 => ĐPCM (điều phải chứng minh)
Cho x,y thuộc Z
CMR : A = (2x + 3y).(3x+2y) chia hết cho 5 thì A chia hết cho 25
Ta có:
2x + 3y chia hết cho 5
2x + 3y + 10x + 5y chia hết cho 5 (vì 10x ; 5y chia hết cho 5)
12x + 8y chia hết cho 5
3(3x +2y) chia hết cho 5
Mà UCLN(3 ; 5) = 1
Do đó 3x + 2y chia hết cho 5
< = > 2x + 3y và 3x + 2y đều chia hết cho 5
< = > A= (2x+ 3y)(2x + 2y) chia hết cho 5.5 = 25
=> ĐPCM
Vì A chia hết cho 5
=> 2x + 3y chia hết cho 5 hoặc 3x+ 2y chia hết cho 5
TH1: 2x+ 3y chia hết cho 5
2x + 3y + 10x + 5y chia hết cho 5 (10x ; 5y đều chia hết cho 5)
12x + 8y chia hết cho 5
4(3x + 2y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 3x+ 2y chia hết cho 5
Vì 2x + 3y và 3x + 2y đều chia hết cho 5
= > A chia hết cho 25
TH2: 3x+ 2y chia hết cho 5
3x + 5x + 2y + 10y chia hết cho 5 (5x ; 10y chia hết cho 5)
8x + 12y chia hết cho 5
4(2x + 3y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 2x+ 3y chia hết cho 5
Vì 2x+ 3y và 3x + 2y đều chia hết cho 5
=> A chia hết cho 25
Từ TH1 và TH2 => ĐPCM
Cmr: x,y thuộc Z thì :
a) x3 - x chia hết cho 6
b) xy3 - yx3 chia hết cho 6
c) x5 - x chia hết cho 30
d) xy5 - yx5 chia hết cho 30
Cho x,y,z thuộc Z và P=(x+2012)5+(2y-2013)5+(3z+2014)5; S=x+2y+3z+2013
CMR: P chia hết cho 3 tương đương S chia hết cho 3