Tìm các số nguyên x thỏa mãn |2x + 3| + |2x - 5| \(\le\) 8
Số các số nguyên x thỏa mãn |2x+3|+|2x-5|\(\le\)8
bài này mình làm rồi nếu mình nhớ không nhầm thì cái này vòng luyện thi phải không
Số các số nguyên x thỏa mãn |2x+3|+|2x-5| <= 8 là ...
Số các số nguyên x thỏa mãn: |2x+3|+|2x-5| nhỏ hơn hoặc bằng 8
Bài 3*: Tìm các cặp số nguyên (x;y) thỏa mãn xy2 + 2x – y2 =8
Lời giải:
$xy^2+2x-y^2=8$
$(xy^2-y^2)+(2x-2)=6$
$y^2(x-1)+2(x-1)=6$
$(y^2+2)(x-1)=6$
Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Tìm các số nguyên x,y thỏa mãn
a) xy + 2x + 2y = 3
b) 5/x + y/4 = 1/8
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
x + 2 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | -1 | 5 | -3 | -9 |
y | 5 | -1 | -9 | -3 |
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)
a. xy + 2x + 2y = 3
<=> x ( y + 2 ) + 2 ( y + 2 ) = 7
<=> ( x + 2 ) ( y + 2 ) = 7
x + 2 | y + 2 | x | y |
7 | 1 | 5 | - 1 |
1 | 7 | - 1 | 5 |
- 7 | - 1 | - 9 | - 3 |
- 1 | - 7 | - 3 | - 9 |
Vậy các cặp ( x ; y ) nguyên thỏa mãn đề bài là ( 5 ; - 1 ) ; ( - 1 ; 5 ) ; ( - 9 ; - 3 ) ( - 3 ; - 9 )
Tìm tập hợp các số nguyên x thỏa mãn (2x -15)5 = (2x-15)3
a 5 = a3 <=> a=1 hay a=(-1)
=> 2x -15= 1 hay 2x -15 = -1 => x= 8 hay x = 7
(2x-15)5 = (2x-15)3 => (2x-15)5 - (2x-15)3 = 0 => (2x-15)3.[(2x-15)2 - 1] = 0 => (2x-15)3 = 0 hoặc (2x-15)2 = 1
Nếu (2x-15)3 = 0 => 2x-15 = 0 => x = 15/2 \(\notin Z\)(loại)
Nếu (2x-15)2 = 1 => 2x - 15 = 1 hoặc 2x -15 = -1
2x-15 = 1 => x = 8
2x-15 = -1 => x=7
Vậy x = 7 , x= 8
a) \(\dfrac{2x}{-9}\) = 10 phần 91
b) -5 phần 2x = 20 phần 28\
c) 1 phần 3 = -3x phần 36
bài 2
a)Tìm các số nguyên x, y sao cho : -4 phần = x phần 22 = 40 phần
b)Tìm các số nguyên x, y, z thỏa mãn: -4 phần 8 = x phần -10 = -7 phần y = z phần -24
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
Tìm số các số nguyên x thỏa mãn 15 - |-2x+3|.|5+4x| = -19
ko biết mới hỏi đây mà ai cũng để trống hết vậy