Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dễ thương
Xem chi tiết
Phan Thanh Tịnh
20 tháng 2 2016 lúc 10:43

Theo hình vẽ , ta có : AH2 + HC2 = AC2 => HC2 = AC2 - AH2 = 102 - 82 = 100 - 64 = 36 => HC = 6 cm

=> HB = BC - HC = 12 - 6 = 6 (cm) => AH2 + HB2 = AB2 = 82 + 62 = 64 + 36 = 100 => AB = 10 cm

=> PABC = AB + BC + AC = 10 + 12 + 10 = 32 (cm)

dễ thương
Xem chi tiết
Miên
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 11:13

\(\dfrac{AI}{AH}=\dfrac{4}{5}\)

=>\(AI=\dfrac{4}{5}AH\)

Ta có: AI+HI=AH

=>\(HI=AH-AI=AH-\dfrac{4}{5}AH=\dfrac{1}{5}AH\)

\(\dfrac{AI}{IH}=\dfrac{\dfrac{4}{5}AH}{\dfrac{1}{5}AH}=\dfrac{4}{5}:\dfrac{1}{5}=4\)

Xét ΔBAH có BI là phân giác

nên \(\dfrac{BA}{BH}=\dfrac{AI}{IH}\)

=>\(\dfrac{10}{BH}=4\)

=>BH=10/4=2,5(cm)

ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

=>\(BC=2\cdot BH=5\left(cm\right)\)

Chu vi tam giác ABC là:

10+10+5=25(cm)

Lương Hà Linh
Xem chi tiết
Nguyễn Huy Tú
13 tháng 6 2021 lúc 12:50

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

Khách vãng lai đã xóa
Nguyễn Huy Tú
13 tháng 6 2021 lúc 13:10

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm 

Khách vãng lai đã xóa
Nguyễn Thúy Diễm
Xem chi tiết
Trần Việt Hà
Xem chi tiết
Lê Ngọc Linh
19 tháng 1 2017 lúc 13:49

AB = 12cm mà AB = AC ( ABC cân tại A )

=> AC = 12 cm.

Xét tam giác vuông ABH và tam giác vuông ACH , ta có:

   AB = AC (gt)

   B = C ( Tính chất tam giác cân)

=> tam giác ABH = tam giác ACH (hệ quả: cạnh huyền góc nhọn ) 

=> BH = HC ( Hai cạnh tương ứng của 2 tam giác = nhau )

Mà BH + HC = 10 (cm)

=> BH = HC = 10 : 2 = 5 cm

Theo định lý Py-ta-go, AH2 = AC2-BC2

                                            = 122-52

                                                           = 144 - 25

                                            = 119 .

Đặng Thành Trung
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 16:19

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

Trần Phương Kim
Xem chi tiết
Hoàng Phúc
19 tháng 2 2016 lúc 20:13

xét tam giác AHC vuông tại H có:

AC2=AH2+HC2

=>HC2=AC2-AH2=102-82=100-64=36=62

=>HC=6(cm)

ta có BH+CH=BC ( vì H E BC)

=>BH=12-6=6(cm)

Xét tam giác AHB vuông tại H có;

AB2=AH2+HB2

=>AB2=82+62=100=102

=>AB=10(cm)

Vậy chu vi tam giác ABC=AB+AC+BC=10+10+12=32(cm)

zZz Phan Cả Phát zZz
26 tháng 2 2016 lúc 20:56

ghe vay chu 

Linh Nguyen
Xem chi tiết
Phạm Thị Hồng Hạnh
22 tháng 8 2020 lúc 11:57

Bài 1                     Giải

     Chu vi HCN là:

     (12+8).2= 40(cm)

     Diện tích HCN là:

       12.8= 96(cm)

 Bài 2     Chu vi hình vuông là:

                  20.4=80(cm)

           Mà chu vi hình vuông bằng chu vi HCN nên:

               Chiều rộng HCN là:

                  (80:2) -25=15(cm)

             Diện tích HCN là:

           15.25=375(cm)

Bài 3               Độ dài cạnh BC là:

                            120:10.2=24(cm)

Bài 4                Diện tích tam giác ABC là:

                             ( 5.8):2 = 20(cm)

 Chúc bn hok tốt~~

          

         

                  

Khách vãng lai đã xóa