Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Xuân Phương
Xem chi tiết
Hãy Like Cho Bexiu
21 tháng 8 2017 lúc 12:14

AI

K

CHO

MINH

VOI

CAM

ON

Hãy Like cho Bexiu
21 tháng 8 2017 lúc 12:18

AI

K

CHO

MINH

VOI

CAM

ON

Hiền Nguyễn
Xem chi tiết
bepro_vn
3 tháng 9 2021 lúc 14:15

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:38

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)

dang thi thuy tien
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 6:40

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2019 lúc 10:17

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 13:15

a: A=(x-1)(x-3)(x2-4x+5)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)

\(=\left(x^2-4x+4\right)^2-1\)

\(=\left(x-2\right)^4-1>=-1\)

Dấu = xảy ra khi x-2=0

=>x=2

b: \(B=x^2-2xy+2y^2-2y+1\)

\(=x^2-2xy+y^2+y^2-2y+1\)

\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)

Dấu = xảy ra khi x-y=0 và y-1=0

=>x=y=1

c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)

\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)

\(=-\left(x^2+5x\right)^2+36+5\)

\(=-\left(x^2+5x\right)^2+41< =41\)

Dấu = xảy ra khi \(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 10:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2019 lúc 6:21

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2018 lúc 12:46

Từ giả thiết ta suy ra

Xét hàm số  f ( t ) = 5 t - 1 3 t + t   với  t   ∈ ℝ ,   f ' ( t ) = 5 t . ln 5 + 3 - t . ln 3 + 1 > 0 ;   ∀ t ∈ ℝ

Suy ra y= f( t) là hàm số đồng biến trên R mà từ ( * ) suy ra

f (x+ 2y) =f( xy-1)  hay x+ 2y= xy-1

với x>0 suy ra y>1.

Khi đó

 

Xét hàm số

  f ( y ) = y 2 + y + 1 y - 1   t r ê n   1 ; + ∞ f ' y = y 2 - 2 y - 2 y - 1 2 = 0 ⇔ y = ± 1 + 3 f 1 + 3 = 3 + 2 3 ;   lim y → 1 f ( y ) = lim y → + ∞ f ( y ) = + ∞

Do đó, giá trị nhỏ nhất của hàm số là  3 + 2 3 .

Vậy kết quả là  3 + 2 3

Chọn B.